PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 5-6 | 1279-1281
Article title

Investigation of the Magnetization Reversal Process of High-Remanent Nd_{10}Fe_{83}Zr_1B_6 Alloy in the As-Cast State

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work the magnetic properties of ribbons with composition of Nd_{10}Fe_{83}Zr_1B_6 obtained by using the melt-spinning method were studied. From the X-ray diffraction patterns the phase composition was determined. It was found that investigated alloy was composed of α-Fe and Nd_2Fe_{14}B phases. From the peaks broadening the grain sizes of α-Fe and Nd_2Fe_{14}B phases were estimated as equal to 20 nm and 40 nm, respectively. From the recoil curves the reversible μ_0 M_{rev} and irreversible μ_0 M_{irr} parts of magnetization and differential susceptibility χ_{rev} and χ_{irr} were determined as a function of an applied field. From these dependences it was found that the pinning of domain walls at the grain boundaries is the main magnetization reversal process. The interactions between grains were investigated by means of the δ M plot. It was stated that short range exchange interaction between grains of hard and soft phases are dominant and causes the remanence enhancement.
Keywords
Contributors
author
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
author
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
author
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
author
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
References
  • 1. R. Coehoorn, D.B. Mooji, C. DeWaard, J. Magn. Magn. Mater. 80, 101 (1989)
  • 2. A. Manaf, R.A. Buckley, H.A. Davies, J. Magn. Magn. Mater. 128, 302 (1993)
  • 3. E.F. Kneller, R. Hawig, IEEE Trans. Magn. 27, 3588 (1991)
  • 4. H. Kronmüller, D. Goll, Scr. Mater 47, 551 (2002)
  • 5. Z. Tian, S. Li, K. Peng, B. Gu, J. Zhang, M. Lu, Y. Du, Mater. Sci. Eng. A 380, 143 (2004)
  • 6. C. Wang, M. Yan, Q. Li, Mater. Sci. Eng. B 150, 77 (2008)
  • 7. C. Wang, M. Yan, Mater. Sci. Eng. B 128, 216 (2006)
  • 8. S. Li, B. Gu, H. Bi, Z. Tian, G. Xie, Y. Zhu, Y. Du, J. Appl. Phys. 92, 7514 (2002)
  • 9. H. Sheng, X. Zeng, D. Fu, F. Deng, Physica B 405, 690 (2010)
  • 10. D.C. Crew, S.H. Farrant, P.G. McCormick, R. Street, J. Magn. Magn. Mater. 163, 299 (1996)
  • 11. E.P. Wohlfarth, J. Appl. Phys. 29, 595 (1958)
  • 12. E.C. Stoner, W.P. Wohlfarth, Philos. Trans. R. Soc. Lond. A 240, 599 (1948)
  • 13. Ch. Rong, Y. Lium, P. Liu, Appl. Phys. Lett. 93, 042508 (2008)
  • 14. C.G. Hadjipanayis, A. Kim, J. Appl. Phys. 63, 3310 (1988)
  • 15. M. Dospial, M. Nabiałek, M. Szota, D. Płusa, J. Alloys Comp., 2011, doi:10.1016/j.jallcom.2010.12.043
  • 16. Y. Sen, S. Xiaoping, D. Youwei, Microelectron. Eng. 66, 121 (2003)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n5-6p89kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.