Title variants
Languages of publication
Abstracts
It is common to describe graphene as ideally flat plane, however there exists both theoretical and experimental evidence that it is most usual to find it in a rippled state. The ripples can be either induced by the substrate or formed spontaneously in suspended graphene. The lateral size of such features ranges between several and tens of nanometers with the height of up to 1 nm. It has been suggested that the presence of ripples could be one of the factors ultimately limiting mobility of carriers and that it may be also responsible, by introducing an effective gauge field, for the lack of weak localization observed in certain graphene samples. In the present contribution the transport properties of the rippled graphene are studied theoretically starting with the simple case of one-dimensional modulation. Using either single-band or the full sp^3 tight-binding Hamiltonians we compare and discuss the importance of two ripple-related mechanisms of scattering: the variation of interatomic distances and hybridization between π and σ bands of graphene.
Discipline
- 72.80.Vp: Electronic transport in graphene
- 81.05.ue: Graphene(for structure of graphene, see 61.48.Gh; for phonons in graphene, see 63.22.Rc; for thermal properties, see 65.80.Ck; for graphene films, see 68.65.Pq; for electronic transport, see 72.80.Vp; for electronic structure, see 73.22.Pr; for optical properties, see 78.67.Wj)
- 72.10.Fk: Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect)
Journal
Year
Volume
Issue
Pages
1246-1249
Physical description
Dates
published
2012-05
Contributors
author
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
References
- 1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)
- 2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)
- 3. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)
- 4. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007)
- 5. J.H.L.A. Fasolino, M.I. Katsnelson, Nature Mater. 6, 858 (2007)
- 6. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Nano Letters 7, 1643 (2007)
- 7. V. Geringer, M. Liebmann, T. Echtermeyer, S. Runte, M. Schmidt, R. Rückamp, M.C. Lemme, M. Morgenstern, Phys. Rev. Lett. 102, 076102 (2009)
- 8. M. Gibertini, A. Tomadin, M. Polini, A. Fasolino, M.I. Katsnelson, Phys. Rev. B 81, 125437 (2010)
- 9. F. Guinea, B. Horovitz, P. Le Doussal, Phys. Rev. B 77, 205421 (2008)
- 10. F. Guinea, M.I. Katsnelson, M.A.H. Vozmediano, Phys. Rev. B 77, 075422 (2008)
- 11. T.O. Wehling, A.V. Balatsky, A.M. Tsvelik, M.I. Katsnelson, A.I. Lichtenstein, Europhys. Lett. 84, 17003 (2008)
- 12. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 016801 (2006)
- 13. M. Katsnelson, A. Geim, Philos. Trans. R. Soc. A 366, 195 (2008)
- 14. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, Londyn 2003
- 15. M. Zwierzycki, P.A. Khomyakov, A.A. Starikov, K. Xia, M. Talanana, P.X. Xu, V.M. Karpan, I. Marushchenko, I. Turek, G.E.W. Bauer, G. Brocks, P.J. Kelly, Phys. Status Solidi B 245, 623 (2008)
- 16. M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006)
- 17. J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n5-6p79kz