Title variants
Languages of publication
Abstracts
This contribution reports on theoretical studies of electronic transport through graphene nanoribbons in the two-terminal geometry. The method combines the Landauer-type formalism with Green's function technique within the framework of the standard tight-binding model. The aim of this study is to gain some insight on how fundamental electric current characteristics (conductance and shot noise) depend on interface conditions imposed by graphene nanoribbon/metal-electrode contact details. Calculations have been carried out for both end- and side-contact geometries, and metallic (zigzag-edge) as well as semiconducting (armchair-edge) graphene nanoribbons. It turns out that results for side-contacted systems depend on the ratio between the free-standing graphene nanoribbon length to that covered by the electrode. For sufficiently long nanoribbons the results start converging when this ratio exceeds 0.5. In the case of ferromagnetic contacts, the giant magnetoresistance coefficient is also discussed.
Discipline
- 73.23.Ad: Ballistic transport
- 81.05.ue: Graphene(for structure of graphene, see 61.48.Gh; for phonons in graphene, see 63.22.Rc; for thermal properties, see 65.80.Ck; for graphene films, see 68.65.Pq; for electronic transport, see 72.80.Vp; for electronic structure, see 73.22.Pr; for optical properties, see 78.67.Wj)
- 75.47.De: Giant magnetoresistance
Journal
Year
Volume
Issue
Pages
1216-1218
Physical description
Dates
published
2012-05
Contributors
author
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
References
- 1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)
- 2. Y.M. Blanter, I. Martin, Phys. Rev. B 76, 155433 (2007)
- 3. J.P. Robinson, H. Schomerus, Phys. Rev. B 76, 115430 (2007)
- 4. D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai, Nano Lett. 3, 15141 (2003)
- 5. X. Song, X. Han, Q. Fu, J. Xu, N. Yu, D. Wang, Nanotechnology 20, 1 (2009)
- 6. Y. Matsuda, W.-Q. Deng, W.A. Goddard, J. Phys. Chem. C 114, 17845 (2010)
- 7. S. Krompiewski, Semicond. Sci. Technol. 25, 085011 (2010)
- 8. S. Krompiewski, J. Martinek, J. Barnaś, Phys. Rev. B 66, 073412 (2002)
- 9. N.M.R. Peres, A.H. Castro Neto, F. Guinea, Phys. Rev. B 73, 195411 (2006)
- 10. A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, S. Roche, Nano Res. 1, 361 (2008)
- 11. I. Weymann, J. Barnaś, S. Krompiewski, Phys. Rev. B 78, 035422 (2008)
- 12. S. Krompiewski, Phys. Rev. B 80, 075433 (2009)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n5-6p69kz