Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 5-6 | 1151-1153
Article title

Electronic Band Structure and Photoemission States of La_{2/3}Pb_{1/3}MnO_3

Title variants
Languages of publication
We present the theoretical study of electronic and magnetic properties in a manganese perovskite La_{2/3}Pb_{1/3}MnO_3. The calculations were carried out in frame of the first-principles density functional theory with the general gradient approximation using the WIEN 2K package. The P3c1 crystal structure was taken from the detailed X-ray diffraction data for the perovskite. The exact exchange energy was utilized for Mn d electrons. Density of states was determined by the modified tetrahedron method. As a result we get a valence band for the spin up and down density of states with the gap for the latter of 1.85 eV. We noticed that conduction band is mainly dominated by d spin up manganese electrons and Mn (d_{xz}, d_{yz}) states have twice larger contribution than (d_{x^2 - y^2}, d_{xy}). We attribute this to Mn-O_6 octahedral tilting. From the same reason d_{3z^2 - r^2} state has no contribution to the density of states at the Fermi energy (E_{F}). Comparison of total density of states with the ultraviolet photoemission spectroscopy measurements shows similar features especially as far as the lead spectral intensity from the 6s electrons at about - 10 eV is concerned. The calculated total magnetic moment per formula unit is 3.66 μ_{B}, the measured one 3.48 μ_{B}/f.u.
  • AGH University of Science and Technology, Department of Solid State Physics, al. A. Mickiewicza 30, 30-059 Cracow, Poland
  • Department of Physics, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • AGH University of Science and Technology, Department of Solid State Physics, al. A. Mickiewicza 30, 30-059 Cracow, Poland
  • AGH University of Science and Technology, Department of Solid State Physics, al. A. Mickiewicza 30, 30-059 Cracow, Poland
  • 1. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance, Springer-Verlag, Berlin 2002
  • 2. C. Zener, Phys. Rev. 82, 403 (1951)
  • 3. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)
  • 4. J. Goodenough, Phys. Rev. 100, 564 (1955)
  • 5. P.-G. de Gennes, Phys. Rev. 118, 141 (1960)
  • 6. P.G. de Gennes, J. Friedel, J. Phys. Chem. Solids 41, 71 (1958)
  • 7. N. Hamada, H. Sawada, K. Terakura, in: Spectroscopy of Mott Insulators and Correlated Metal, Eds. A. Fujimori, Y. Tokura, Springer-Verlag, Berlin 1995, p. 95
  • 8. W.E. Pickett, D.J. Singh, Phys. Rev. B 53, 1146 (1996)
  • 9. D.J. Singh, Planewaves, Pseudopotentials, and the LAPW Method, Kluwer Academic, Boston 1994
  • 10. A. Kowalczyk, A. Szajek, A. Slebarski, J. Baszynski, A. Winiarski, J. Magn. Magn. Mater. 217, 44 (2000)
  • 11. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna 2001
  • 12. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)
  • 13. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)
  • 14. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
  • 15. J.C. Slater, Phys. Rev. 51, 195 (1937)
  • 16. F. Tran, P. Blaha, K. Schwarz, P. Novak, Phys. Rev. B 74, 155108 (2006)
  • 17. G. Gritzner, M. Koppe, K. Kellner, J. Przewoźnik, J. Chmist, A. Kołodziejczyk, K. Krop, Appl. Phys. A 81, 1491 (2005)
  • 18. R. Yu, D. Singh, H. Krakauer, Phys. Rev. B 43, 6411 (1991)
  • 19. P.W. Atkins, R. Friedman, Molecular Quantum Mechanics, 3rd ed., Oxford University Press, Oxford 1996
  • 20. M. Kowalik, R. Zalecki, A. Kołodziejczyk, Acta Phys. Pol. A 117, 277 (2010)
  • 21. J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)
  • 22. J. Przewoźnik, M. Kowalik, A. Kołodziejczyk, G. Gritzner, Cz. Kapusta, J. Alloys Comp. 497, 17 (2010)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.