Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 5-6 | 1111-1114

Article title

Galois Properties of the Eigenproblem of the Hexagonal Magnetic Heisenberg Ring

Content

Title variants

Languages of publication

EN

Abstracts

EN
We analyse the number field-theoretic properties of solutions of the eigenproblem of the Heisenberg Hamiltonian for the magnetic hexagon with the single-node spin 1/2 and isotropic exchange interactions. It follows that eigenenergies and eigenstates are expressible within an extension of the prime field ℚ of rationals of degree 2^3 and 2^4, respectively. In quantum information setting, each real extension of rank 2 represents an arithmetic qubit. We demonstrate in detail some actions of the Galois group on the eigenproblem.

Keywords

Contributors

author
  • Department of Mathematical and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
author
  • Department of Mathematical and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
author
  • Department of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
  • Chair of Physics, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland

References

  • 1. H. Bethe, Z. Phys. 71, 205 (1931) (in German; English translation in: D.C. Mattis, The Many-Body Problem, World Sci., Singapore 1993, p. 689)
  • 2. L.D. Faddeev, L.A. Takhtajan, Zapiski Nauchnych Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta AN SSSR (LOMI) 109, (1981) (in Russian; English translation: J. Sov. Math. 24, 241 (1984))
  • 3. S. Lang, Algebra, Addison-Wesley World Student Series, Reading (MA) 1970
  • 4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge 2000
  • 5. B. Lulek, T. Lulek, D. Jakubczyk, P. Jakubczyk, Physica B 382, 162 (2006)
  • 6. J. Milewski, B. Lulek, T. Lulek, Phys. Status Solidi B 244, 2497 (2007)
  • 7. J. Milewski, E. Ambrożko, J. Phys. Conf. Ser. 104, 012040 (2008)
  • 8. B. Lulek, T. Lulek, J. Milewski, Acta Phys. Pol. A 115, 159 (2009)
  • 9. J. Milewski, G. Banaszak, T. Lulek, Open Syst. Inform. Dynam. 17, 89 (2010)
  • 10. B. Lulek, T. Lulek, M. Labuz, R. Stagraczynski, Physica B 405, 2654 (2010)
  • 11. J. Milewski, G. Banaszak, T. Lulek, M. Labuz, Physica B 406, 520 (2011)
  • 12. T. Lulek, Banach Center Publ. 78, 231 (2007)
  • 13. K.M. O'Connor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001)
  • 14. G. Morandi, The Role of Topology in Classical and Quantum Physics, Lecture Notes in Physics, Springer Verlag, Berlin 1992
  • 15. W. Shor, Phys. Rev. A 52, 2493 (1995)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n5-6p36kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.