Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
A simple effective model of charge ordered and (or) magnetically ordered insulators is studied. The tight binding Hamiltonian analyzed consists of (i) the effective on-site interaction U, (ii) the intersite density-density interaction W and (iii) intersite magnetic exchange interaction J^{z} (or J^{xy}) between nearest-neighbors. The intersite interaction are treated within the mean-field approximation. One shows that the systems considered can exhibit very interesting multicritical behaviors, including among others bicritical, tricritical, tetracritical and critical end points. The analysis of the model has been performed for an arbitrary electron concentration as well as an arbitrary chemical potential in the limit of strong on-site repulsion (U → +∞). The phase diagrams obtained in such a case are shown to consist of at least 9 different states, including four homogeneous phases: nonordered (NO), ferromagnetic (F), charge ordered (CO), ferrimagnetic (intermediate, I) and five types of phase separation: NO-NO, F-NO, F-F, CO-F, CO-I.
Discipline
- 75.30.Fv: Spin-density waves
- 71.45.Lr: Charge-density-wave systems(see also 75.30.Fv Spin-density waves)
- 71.10.Fd: Lattice fermion models (Hubbard model, etc.)
- 71.10.Hf: Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems
- 64.75.Gh: Phase separation and segregation in model systems (hard spheres, Lennard-Jones, etc.)
Journal
Year
Volume
Issue
Pages
1032-1034
Physical description
Dates
published
2012-05
Contributors
author
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
References
- 1. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990)
- 2. T. Goto, B. Lüthi, Adv. Phys. 52, 67 (2003); E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)
- 3. J. van den Brink, D.I. Khomskii, J. Phys., Condens. Matter 20, 434217 (2008)
- 4. U. Brandt, J. Stolze, Z. Phys. B 62, 433 (1986); J. Jędrzejewski, Physica A 205, 702 (1994)
- 5. W. Kłobus, K. Kapcia, S. Robaszkiewicz, Acta Phys. Pol. A 118, 353 (2010)
- 6. R. Micnas, S. Robaszkiewicz, K.A. Chao, Phys. Rev. B 29, 2784 (1984)
- 7. K. Kapcia, W. Kłobus, S. Robaszkiewicz, Acta Phys. Pol. A 118, 350 (2010)
- 8. K. Kapcia, S. Robaszkiewicz, J. Phys., Condens. Matter 23, 105601 (2011); 23, 249802 (2011)
- 9. S. Robaszkiewicz, Acta Phys. Pol. A 55, 453 (1979); Phys. Status Solidi B 70, K51 (1975)
- 10. W. Hoston, A.N. Berker, Phys. Rev. Lett. 67, 1027 (1991); C. Ekiz, M. Keskin, Phys. Rev. B 66, 054105 (2002)
- 11. R.J. Bursill, C.J. Thompson, J. Phys. A: Math. Gen. 26, 4497 (1993); F. Macini, F.P. Mancini, Eur. Phys. J. B 73, 581 (2010)
- 12. W. Kłobus, M.Sc. Thesis, Adam Mickiewicz University, Poznań 2009
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n5-6p12kz