Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 4 | 928-931

Article title

Effect of Interstitial Iron Defect and Doping on Physical Properties and Stability of Iron Telluride

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We report on the effect of interstitial iron defect and doping on iron physical properties and stability of iron telluride by combined experimental and theoretical study. We find that antimony doping and increase iron content in interstitial effect have both the effect to slightly decrease the temperature of the magneto-structural transition T_{trans}. From stability calculations and absence of change in lattice parameters, it is suggested that insertion of antimony did not occur. Large decrease of T_{trans} down to 32 K was observed with Ni doping and our stability calculations confirm that the Ni doping is most favorable in the stability point of view. First-Principles calculations of stability of defect using supercell technique for stoichiometric FeTe indicate that the most stable defect is iron interstitial defect, by far, confirming the proposal done in the literature. Our electronic calculations indicate the appearance of large peaks around the Fermi level in the case of this defect and not just simple doping effect.

Keywords

Contributors

author
  • Institut Charles Gerhardt, University Montpellier 2 and CNRS, Pl. E. Bataillon, Montpellier, France
  • Condensed Matter Physics Department, University of Geneva, 21 Quai E. Ansermet, Geneva, Switzerland

References

  • 1. K. Ishida, Y. Nakai, H. Hosono, J. Phys. Soc. Jpn. 78, 062001, (2009)
  • 2. D.C. Johnston, Adv. Phys. 59, 803, (2010)
  • 3. R. Viennois, E. Giannini, D. van der Marel, R. Cerny, J. Solid State Chem. 183, 769, (2010)
  • 4. P.E. Blöchl, Phys. Rev. B 50, 17953, (1994)
  • 5. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169, (1996)
  • 6. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758, (1999)
  • 7. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865, (1996)
  • 8. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188, (1976)
  • 9. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616, (1989)
  • 10. E.E. Rodriguez, C. Stock, P. Zajdel, K.L. Krycka, C.F. Majkrzak, P. Zavalij, M.A. Green, Phys. Rev. B 84, 064403, (2011)
  • 11. I. Pallechi, G. Lamura, M. Tropeano, M. Putti, Phys. Rev. B 80, 214511, (2009)
  • 12. H. Ipser, K.L. Komarek, H. Mikler, Mh. Chem. 105, 1322, (1974)
  • 13. W. Schuster, H. Mikler, K.L. Komarek, Mh. Chem. 110, 1153, (1979)
  • 14. J. Harl, G. Kresse, Phys. Rev. Lett. 103, 056401, (2009)
  • 15. E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, R. Khasanov, Phys. Rev. B 80, 024517, (2009)
  • 16. E. Rost, G. Akesson, Acta Chem. Scand. 26, 3662, (1972)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n4p301kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.