Title variants
Languages of publication
Abstracts
We report on the effect of interstitial iron defect and doping on iron physical properties and stability of iron telluride by combined experimental and theoretical study. We find that antimony doping and increase iron content in interstitial effect have both the effect to slightly decrease the temperature of the magneto-structural transition T_{trans}. From stability calculations and absence of change in lattice parameters, it is suggested that insertion of antimony did not occur. Large decrease of T_{trans} down to 32 K was observed with Ni doping and our stability calculations confirm that the Ni doping is most favorable in the stability point of view. First-Principles calculations of stability of defect using supercell technique for stoichiometric FeTe indicate that the most stable defect is iron interstitial defect, by far, confirming the proposal done in the literature. Our electronic calculations indicate the appearance of large peaks around the Fermi level in the case of this defect and not just simple doping effect.
Discipline
- 71.55.Ak: Metals, semimetals, and alloys
- 71.20.Lp: Intermetallic compounds
- 61.72.-y: Defects and impurities in crystals; microstructure(for radiation induced defects, see 61.80.-x; for defects in surfaces, interfaces, and thin films, see 68.35.Dv and 68.55.Ln; see also 85.40.Ry Impurity doping, diffusion, and ion implantation technology; for effects of crystal defects and doping on superconducting transition temperature, see 74.62.Dh)
- 74.70.Xa: Pnictides and chalcogenides
Journal
Year
Volume
Issue
Pages
928-931
Physical description
Dates
published
2012-04
Contributors
author
- Institut Charles Gerhardt, University Montpellier 2 and CNRS, Pl. E. Bataillon, Montpellier, France
- Condensed Matter Physics Department, University of Geneva, 21 Quai E. Ansermet, Geneva, Switzerland
References
- 1. K. Ishida, Y. Nakai, H. Hosono, J. Phys. Soc. Jpn. 78, 062001, (2009)
- 2. D.C. Johnston, Adv. Phys. 59, 803, (2010)
- 3. R. Viennois, E. Giannini, D. van der Marel, R. Cerny, J. Solid State Chem. 183, 769, (2010)
- 4. P.E. Blöchl, Phys. Rev. B 50, 17953, (1994)
- 5. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169, (1996)
- 6. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758, (1999)
- 7. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865, (1996)
- 8. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188, (1976)
- 9. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616, (1989)
- 10. E.E. Rodriguez, C. Stock, P. Zajdel, K.L. Krycka, C.F. Majkrzak, P. Zavalij, M.A. Green, Phys. Rev. B 84, 064403, (2011)
- 11. I. Pallechi, G. Lamura, M. Tropeano, M. Putti, Phys. Rev. B 80, 214511, (2009)
- 12. H. Ipser, K.L. Komarek, H. Mikler, Mh. Chem. 105, 1322, (1974)
- 13. W. Schuster, H. Mikler, K.L. Komarek, Mh. Chem. 110, 1153, (1979)
- 14. J. Harl, G. Kresse, Phys. Rev. Lett. 103, 056401, (2009)
- 15. E. Pomjakushina, K. Conder, V. Pomjakushin, M. Bendele, R. Khasanov, Phys. Rev. B 80, 024517, (2009)
- 16. E. Rost, G. Akesson, Acta Chem. Scand. 26, 3662, (1972)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n4p301kz