PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 2B | B-72-B-76
Article title

Structural Stochastic Multiresonance in Hierarchical Networks

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Systems with a structure of hierarchical networks, consisting of simple units placed in the nodes and interacting along the edges of the network, are ubiquitous in the modern society and economy. In this paper the problem of signal detection and transmission in such systems in the presence of noise is analyzed from the point of view of stochastic resonance. As examples simple tree-like and more complex Ravasz-Barabási networks of interacting threshold elements are considered. It is shown that stochastic multiresonance is often observed, a phenomenon characterized by the presence of two or more maxima of the output signal-to-noise ratio as a function of the input noise intensity. The origin of the additional maxima, which occur for small noise intensities, can be related to the structure of the interactions, thus the observed phenomenon is an example of structural stochastic multiresonance.
Keywords
EN
Contributors
author
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland
author
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland
References
  • [1] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)
  • [2] S. N. Dorogovtsev, J. F. F. Mendes, Evolution of Networks. From Biological Nets to the Internet and WWW, Oxford University Press, Oxford, UK, 2003
  • [3] E. Ravasz and A. Barabási, Phys. Rev. E67, 026112 (2003)
  • [4] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453 (1981)
  • [5] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)
  • [6] M. D. McDonell, N. G. Stocks, C. E. M. Pearce, and D. Abbott, Stochastic Resonance. From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization, 1st ed. (Cambridge University Press, Cambridge, 2008)
  • [7] J. M. G. Vilar and J. M. Rubí, Phys. Rev. Lett. 78, 2882 (1997)
  • [8] J. M. G. Vilar and J. M. Rubí, Physica A264, 1 (1999)
  • [9] S. Matyjaśkiewicz, A. Krawiecki, J. A. Hołyst, and L. Schimansky-Geier, Phys. Rev. E68, 016216 (2003)
  • [10] M. Evstigneev, P. Reimann, V. Pankov, and R. H. Prince, Europhys. Lett. 65, 7 (2004)
  • [12] E. I. Volkov, E. Ullner, and J. Kurths, Chaos 15, 023105 (2005)
  • [12] R. Mankin, K. Laas, T. Laas, E. Reiter, Phys. Rev. E78, 031120 (2008)
  • [13] A. Krawiecki, Acta Phys. Polonica B39, 1103 (2008)
  • [14] A. Krawiecki, Eur. Phys. J. B69, 81 (2009)
  • [15] M. Kaim and A. Krawiecki, Phys. Lett. A374, 4814 (2010)
  • [16] F. Chapeau-Blondeau, Phys. Rev. E53, 5469 (1996)
  • [17] A. Krawiecki, A. Sukiennicki, and R.A. Kosiński, Phys. Rev. E62, 7683 (2000)
  • [18] J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and A. R. Bulsara, Phys. Rev. Lett. 75, 3 (1995)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n2ba121z2bp14kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.