Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 2B | B-34-B-39

Article title

Multifractal Background Noise of Monofractal Signals

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We investigate the presence of multifractal residual background effect for monofractal signals which appears due to the finite length of the signals and (or) due to the constant long memory the signals reveal. This phenomenon is investigated numerically within the multifractal detrended fluctuation analysis (MF-DFA) for artificially generated time series. Next, the analytical formulas enabling to describe the multifractal content in such signals are provided. Final results are shown in the frequently used generalized Hurst exponent h(q) multifractal scenario as a function of time series length L and the autocorrelation scaling exponent value γ. The obtained results may be significant in any practical application of multifractality, including financial data analysis, because the "true" multifractal effect should be clearly separated from the so called "multifractal noise" resulting from the finite data length. Examples from finance in this context are given. The provided formulas may help to decide whether one deals with the signal of real multifractal origin or not and make further step in analysis of the so called spurious or corrupted multifractality discussed in literature.

Keywords

Contributors

author
  • Institute of Theoretical Physics, University of Wrocław, PL-50-204 Wrocław, Poland
author
  • Institute of Theoretical Physics, University of Wrocław, PL-50-204 Wrocław, Poland

References

  • [1] S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, Nature 381, 767 (1996)
  • [2] R.N. Mantegna, H.E. Stanley, Nature 383, 587 (1996)
  • [3] B.B. Mandelbrot, Sci. Am. 298, 70 (1999)
  • [4] J.W. Kantelhardt, arXiv: 0804.0747v1 [phys.data-an]
  • [5] Z. Eisler, J. Kertész, Physica A 343, 603 (2004)
  • [6] H.G.E. Hentschel, I. Procaccia, Physica D 8, 435 (1983)
  • [7] T.C Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1983)
  • [8] J.F. Muzy, E. Bacry, A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991)
  • [9] P.P. Dimitriu, E.M. Scordilis, V.G. Karacostas, Natural Hazards 21, 277 (2000); J.W. Kantelhardt, D. Rybski, S.A. Zschiegner, P. Braun, E. Koscielny-Bunde, V. Livina, S. Havlin, A. Bunde, Physica A 330, 240 (2003); Y. Ashkenazy, D.R. Baker, H. Gildor, S. Havlin, Geophys. Res. Lett. 30, 2146 (2003); R.G. Kavasseri, R. Nagarajan, Chaos, Solitons, Fractals. 24, 165 (2005)
  • [10] L.F. Burlaga, J. Geophys. Res. 97, 4283 (1992); Z. Vőrős, W. Baumjohann, R. Nakamura, A. Runov, T.L. Zhang, M. Volwerk, H.U. Eichelberger, A. Balogh, T.S. Horbury, K.H. Glassmeier, B. Klecker, H. Reme, Ann. Geophys. 21, 1955 (2003)
  • [11] D.W. Chappell, J. Scalo, Astrophys. J. 551, 712 (2001); V.I. Abramenko, Solar Phys. 228, 29 (2005); M.S. Movahed, G.R. Jafari, F. Ghasemi, S. Rahvar, M.R.R. Tabar, J. Stat. Mech. P02003 (2006)
  • [12] P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, H.E. Stanley, Nature 399, 461 (1999); B.J. West, M. Latka, M. Glaubic-Latka, D. Latka, Physica A 318, 453 (2003); M.S. Baptista, L.O.B. de Almeida, J.F.W. Slaets, R. Koberle, C. Grebogi, Phil. Trans, R. Soc. A 366, 345 (2008)
  • [13] D. Makowiec, A. Dudkowska, R. Gałąska, A. Rynkiewicz, Physica A 388, 3486 (2009)
  • [14] G. Bianconi, A.-L. Barabási, Europhys. Lett. 54, 436 (2001); G. Zhu, H.J. Yang, C.Y. Yin, B.W. Li, Phys. Rev. E 77, 066113 (2008)
  • [15] K. Matia, Y. Ashkenazy, H.E. Stanley, Europhys. Lett. 61, 422 (2003)
  • [16] J. Kwapień, P. Oświęcimka, S. Drożdż, Physica A 350, 466 (2005)
  • [17] P. Oświęcimka, J. Kwapień, S. Drożdż, Physica A 347, 626 (2005)
  • [18] L.G. Moyana, J. de Souza, S.M.D. Queiros, Physica A 371, 118 (2006)
  • [19] J. Jiang, K. Ma, X. Cai, Physica A 378, 399 (2007)
  • [20] K.E. Lee, J.W. Lee, Physica A 383, 65 (2007)
  • [21] G. Lim, S. Kim, H. Lee, K. Kim, D.-I. Lee, Physica A 386, 259 (2007)
  • [22] Z.-Y. Su, Y.-T.Wang, H.-Y. Huang, J. Korean Phys. Soc. 54, 1395 (2009)
  • [23] P. Oświęcimka, J. Kwapień, S. Drożdż, A.Z. Górski, R. Rak, Acta Phys. Pol. A 114, 3 (2008)
  • [24] Ł. Czarnecki, D. Grech, Acta Phys. Pol. A 117, 4 (2010)
  • [25] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002)
  • [26] Wei-Xing Zhou, arXiv:0912.4782v1 [q-fin.ST]
  • [27] S. Drożdż, J. Kwapień, P. Oświęcimka, R. Rak, Europhys. Lett. 88, 60003 (2009), arXiv:0907.2866 [physics.data-an]
  • [28] J. Ludescher, M.I. Bogachev, J.W. Kantelhardt, A.Y. Schumann, A. Bunde, Physica A 390, 2480 (2011)
  • [29] A.Y. Schumann, J.W. Kantelhardt, Physica A 390, 2637 (2011)
  • [30] H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 2 (1996)
  • [31] J. Feder, Fractals, New York, Plenum Press (1988)
  • [32] H.-O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals, 2nd ed. Springer, 2004
  • [33] H.E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951)
  • [34] J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin , A. Bunde, Physica A 295, 441 (2001)
  • [35] L. Zunino, B.M. Tabak, A.Figliola, D.G. Pérez, M. Garavaglia, O.A. Rosso, Physica A 387, 6558 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n2ba121z2bp07kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.