Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 2B | B-28-B-30

Article title

Accuracy Analysis of the Box-Counting Algorithm

Content

Title variants

Languages of publication

EN

Abstracts

EN
Accuracy of the box-counting algorithm for numerical computation of the fractal exponents is investigated. To this end several sample mathematical fractal sets are analyzed. It is shown that the standard deviation obtained for the fit of the fractal scaling in the log-log plot strongly underestimates the actual error. The real computational error was found to have power scaling with respect to the number of data points in the sample (n_{tot}). For fractals embedded in two-dimensional space the error is larger than for those embedded in one-dimensional space. For fractal functions the error is even larger. Obtained formula can give more realistic estimates for the computed generalized fractal exponents' accuracy.

Keywords

EN

Contributors

author
  • H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków, 31-342, Poland
author
  • H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków, 31-342, Poland
  • Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, 31-155 Kraków, Poland
author
  • H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków, 31-342, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
author
  • H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków, 31-342, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland

References

  • [1] A. Białas, R. Peszanski, Nucl. Phys. B 308, 803 (1988)
  • [2] T. Chmaj, W. Doroba, W. Słomiński, Z. Phys. C50, 333 (1991)
  • [3] A. Z. Górski, J. Skrzat, J. Anat. 208, 353 (2006)
  • [4] A.Z. Górski, S. Drożdż, J. Speth, Physica A316, 496 (2002)
  • [5] A. Z. Górski, Comment on fractality of quantum mechanical energy spectra, preprint arXiv chao-dyn/9804034
  • [6] A. Z. Górski, J. Phys. A34, 7933 (2001)
  • [7] J. L. McCauley, Physica A309, 183 (2002)
  • [8] P. Castiglioni, Comput. Biol. Med. 40, 950 (2010)
  • [9] J. Theiler, J. Opt. Soc. Am. A7, 1055 (1990)
  • [10] A. Roy, E. Perfect, W. M. Dunne, L. D. McKay, J. Geophys. Res., 112, B12201 (2007)
  • [11] J. Brewer, L. D. Girolamo Atm. Res., 433 (2006)
  • [12] S. Jaffard, SIAM J. Math. Anal. 28 944; 971, (1997)
  • [13] B. B. Mandelbrot, Fractals: Form, Chance, and Dimension (San Francisco: Freeman 1977)
  • [14] T. Tel, T. Vicsek, J. Phys. A20, L835 (1987)
  • [15] M. V. Berry, Z. V. Lewis, Proc. R. Soc. Lond. A370, 459 (1980)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n2ba121z2bp05kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.