Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Hydrothermal synthesis of hydroxyapatite (HA) is a method which is relatively easy to apply and enables HA precipitation on substrates of various shapes, which is vital to endoprostheses fabrication. Anodic oxidation facilitates HA precipitation, making the coating thicker and more uniform. In this paper the influence of anodic oxidation of titanium substrates on HA precipitation in hydrothermal synthesis is discussed. To determine chemical composition and coating uniformity of anodised and polished Ti substrates the Raman microspectroscopy was employed. The composition was also confirmed using X-ray diffraction method. HA coatings on Ti after anodic oxidation exhibit higher uniformity in comparison to untreated Ti. The X-ray diffraction patterns showed that the HA coating was partly amorphous. Also influence of additional treatment (soaking in NaOH and/or HBSS) after anodic oxidation is discussed in the present paper. It seems that pretreatment may be favourable in some cases, but if the anodic oxidation was conducted in the presence of calcium phosphates the pretreatment seems to prevent the HA precipitation.
Discipline
- 85.85.+j: Micro- and nano-electromechanical systems (MEMS/NEMS) and devices
- 82.80.Gk: Analytical methods involving vibrational spectroscopy
- 87.64.Bx: Electron, neutron and x-ray diffraction and scattering
- 87.85.J-: Biomaterials
- 81.20.Ka: Chemical synthesis; combustion synthesis(for electrochemical synthesis, see 82.45.Aa)
Journal
Year
Volume
Issue
Pages
561-564
Physical description
Dates
published
2012-02
Contributors
author
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
author
- Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
author
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
References
- [1] Y. Zhang, T. Fu, Y. Han, Q. Wang, Y. Zhao, K. Xu, Biomol. Eng. 19, 57 (2002)
- [2] C. Chang, J. Huang, J. Xia, C. Ding, Ceram. Int. 25, 479 (1999)
- [3] M. Sato, E. Slamovich, T. Webster, Biomaterials 26, 1349 (2005)
- [4] K. Hamada, M. Kon, T. Hanawa, K. Yokoyama, Y. Miyamoto, K. Asaoka, Biomaterials 23, 2265 (2002)
- [5] Y. Fujishiro, M. Nishino, A. Sugimori, A. Okuwaki, T. Sato, J. Mater. Sci. Mater. Med. 12, 333 (2001)
- [6] Y. Fujishiro, A. Fujimoto, T. Sato, A. Okuwaki, J. Colloid Interface Sci. 173, 119 (1995)
- [7] A. Strzała, M. Marszałek, Eng. Biomater. 96-98, 16 (2010)
- [8] A. Strzała, B. Petelenz, J. Kwiatkowska, B. Rajchel, Eng. Biomater. 92, 24 (2010)
- [9] A. Strzała, M. Marszałek, Eng. Biomater. 106-108, 26 (2011)
- [10] M. Calixtode Andrade, M. Tavares Filgueiras, T. Ogasawara, J. Eur. Ceram. Soc. 22, 505 (2002)
- [11] W. Simka, A. Iwaniak, G. Nawrat, A. Maciej, J. Michalska, K. Radwański, J. Gazdowicz, Electrochim. Acta 54, 6983 (2009)
- [12] W. Simka, A. Sadkowski, M. Warczak, A. Iwaniak, G. Dercz, J. Michalska, A. Maciej, Electrochim. Acta 55, 8962 (2011)
- [13] W. Simka, Electrochim. Acta 55, 9831 (2011)
- [14] B. Yang, M. Uchida, H.-M. Kim, X. Zhang, T. Kokubo, Biomaterials 25, 1003 (2004)
- [15] X. Cui, H.-M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, T. Nakamura, Dent. Mater. 25, 80 (2009)
- [16] G. Raikar, J. Geregory, J. Ong, L. Lucas, J. Lemons, D. Kawakara, M. Nakamura, J. Vac. Sci. Technol. A 13, 2633 (1995)
- [17] C. Moseke, V.V. Pilipenko, O. Bölling, L.F. Sukhodub, B. Sulkio-Cleff, in: Mineralization of Hydroxyapatite under Influence of Metal Ions. Annual Report 2002/03, Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, p. 81
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n285kz