Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 2 | 543-545

Article title

Micropatterning of Silicon Surface by Direct Laser Interference Lithography

Content

Title variants

Languages of publication

EN

Abstracts

EN
Direct laser interference lithography is a new and low cost technique which can generate the line- or dot-like periodic patterns over large areas. In the present work, we report on direct fabrication of micrometer structures on Si surface. In the experiments the pulsed high power Nd:YAG laser operating at 1064 nm wavelength was used. Two-beam configuration with an angle of incidence of 40° was employed and different laser fluences up to 2.11 J/cm^2 were tested. Areas about 1 cm in diameter have been processed with a single pulse of 10 ns. The laser treated samples were analyzed by atomic force microscopy to investigate the surface topography and to measure the size and depth of the achieved structures. We observed periodic line-like arrays with grating period of the order of 1 μm.

Keywords

EN

Contributors

author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
author
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
author
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
author
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
author
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

References

  • [1] A. Aktag, S. Michalski, L. Yue, R.D. Kirby, S.-H. Liou, J. Appl. Phys. 99, 093901 (2006)
  • [2] C. Schuppler, A. Habencht, I.L. Guhr, Appl. Phys. Lett. 88, 012506 (2006)
  • [3] Y. Cheng, A. Pepin, Electrophoresis 22, 187 (2001)
  • [4] A. Lasagni, C. Holzapfel, T. Weirich, F. Mucklich, Appl. Surf. Sci. 253, 8070 (2007)
  • [5] A. Lasagni, F. Mucklich, J. Mater. Proc. Technol. 209, 202 (2009)
  • [6] Y. Zabila, M. Perzanowski, A. Dobrowolska, M. Kąc, A. Polit, M. Marszałek, Acta Phys. Pol. A 115, 591 (2009)
  • [7] S. Riedel, M. Schmotz, P. Leiderer, J. Boneberg, Appl. Phys. A 101, 309 (2010)
  • [8] M. Ellman, A. Rodriguez, N. Perez, M. Echeverrira, Y.K. Verevkin, C.S. Peng, T. Berthou, Z. Wang, S.M. Olaizola, I. Ayerdi, Appl. Surf. Sci. 255, 5537 (2009)
  • [9] M. Thompson, J. Mayer, A.G. Cullis, H.C. Webber, N.G. Chew, J.M. Poate, D.C. Jacobson, Phys. Rev. Lett. 50, 896 (1983)
  • [10] J.A. Yater, M.O. Thompson, Phys. Rev. Lett. 63, 2088 (1989)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n281kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.