PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 2 | 533-538
Article title

Implementation of NSOM to Biological Samples

Content
Title variants
Languages of publication
EN
Abstracts
EN
Near-field scanning optical microscopy is a technique providing images of structures with spatial resolution better than λ/2, which is undetectable in far-field where the Abbe law of limiting resolution is critical. In parallel to the optical imaging, topography maps are also acquired. Near-field scanning optical microscopy measurements can be performed both in air and liquid environments. The later makes the technique very useful for biomaterials analysis offering information that could not be obtained with other methods. Our work presents the results of recent studies on application of near-field scanning optical microscopy to imaging of cells in air as well as in physiological buffers. Differences in cell's topography and morphology have been noticed between two cell lines from human bladder non-malignant (HCV29) and malignant (T24) cancers. Presented results are part of the research that characterizes physiological changes of cells depending on stage of cancer.
Keywords
EN
Publisher

Year
Volume
121
Issue
2
Pages
533-538
Physical description
Dates
published
2012-02
Contributors
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, E. Radzikowskiego 152, 31-342 Kraków, Poland
  • The Smoluchowski Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-054 Kraków, Poland
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, E. Radzikowskiego 152, 31-342 Kraków, Poland
author
  • The Smoluchowski Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-054 Kraków, Poland
author
  • The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, E. Radzikowskiego 152, 31-342 Kraków, Poland
author
  • The Smoluchowski Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-054 Kraków, Poland
References
  • [1] O. Mooren, E. Erickson, N. Dickenson, R. Dunn, J. Lab. Autom., JALA 11, 268 (2006)
  • [2] R.C. Dunn, Chem. Rev. 99, 2891 (1999)
  • [3] J. Tersoff, D.R. Hamann, Phys. Rev. B 31, 805 (1985)
  • [4] G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986)
  • [5] Y. Martin, H.K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987)
  • [6] M. Nonnenmacher, M.P. O'Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)
  • [7] E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991)
  • [8] T. Berdyyeva, C. Woodwarth, I. Sokolov, Ultramicroscopy 102, 189 (2005)
  • [9] D. Allison, N. Mortensen, C. Sullivan, M. Doktycz, WIREs Nanomedicine and Nanobiotechnology 2, 618 (2010)
  • [10] G. Longo, M. Girasole, G. Pompeo, R. Generosi, M. Luce, A. Cricenti, Phys. Status Solidi B 247, 2051 (2010)
  • [11] M.F. Garcia-Parajó, B.I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C.G. Figdor, N.F. van Hulst, Nanobiotechnol. 1, 113 (2005)
  • [12] A.P. Sommer, R.P. Franke, J. Proteome Res. 1, 111 (2002)
  • [13] T.H. Keller, T. Rayment, D. Klenerman, R.J. Stephenson, Rev. Sci. Instrum. 68, 1448 (1997)
  • [14] C. Hoppener, J.P. Siebrasse, R. Peters, U. Kubitscheck, A. Naber, Biophys. J. 88, 3681 (2005)
  • [15] M. De Serio, R. Zenobi, V. Deckert, Trends Anal. Chem. 22, 70 (2003)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n279kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.