PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 2 | 527-532
Article title

NMR Relaxation and ESR Lineshape of Anisotropically Rotating Paramagnetic Molecules

Content
Title variants
Languages of publication
EN
Abstracts
EN
The role of anisotropic rotation for electron spin resonance lineshape and nuclear magnetic relaxation dispersion profiles for paramagnetic molecules with electron spin quantum number S ≥ 1 is discussed. The ESR spectra and nuclear magnetic relaxation dispersion profiles are calculated by means of an approach based on the stochastic Liouville equation and referred to in the literature as "Swedish slow motion theory". This description is valid for arbitrary motional conditions and interaction strengths. Molecular tumbling influences the ESR spectra by modulating zero field splitting interactions. The nuclear spin relaxation is affected by the rotational motion in a twofold way: via the electron spin dynamics and as a direct source of modulations of the electron-nuclear dipole-dipole interactions. For coinciding principal axes systems of the permanent (residual, static) zero field splitting and rotational tensors the ESR lineshape is not affected by rotational anisotropy. Rotational anisotropy is important for nuclear relaxation as it is influenced by molecular rotation not only via the electron spin dynamics, but also directly by modulations of the electron spin-nuclear spin dipole-dipole interaction (when the dipole-dipole and zero field splitting frames do not coincide). The anisotropy effects depend strongly on the relative orientation of the dipole-dipole and permanent zero field splitting axes. Nevertheless, a different scenario is also possible. When the diffusion axis coincides with the dipole-dipole axis (but not with the principal axis system of the permanent zero field splitting), the nuclear spin relaxation as well as the ESR lineshape, become sensitive to the rotational anisotropy. The possible dependence of the ESR lineshape and nuclear spin relaxation on the rotational anisotropy should be carefully considered when attempting a joint analysis of ESR and nuclear magnetic relaxation dispersion results for paramagnetic molecules.
Keywords
Contributors
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4,30-059 Kraków, Poland
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4,30-059 Kraków, Poland
author
  • The University of Economy in Bydgoszcz, Garbary 2, 82-299 Bydgoszcz, Poland
author
  • Physics Department, University at Albany (SUNY), 1400 Washington Ave., Albany, NY 12222, USA
author
  • University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer Science, Słoneczna 54, PL-10-710 Olsztyn, Poland
References
  • [1] I. Bertini, C. Luchinat, G. Parigi, Solution NMR of Paramagnetic Molecules, Elsevier, Amsterdam 2001
  • [2] J. Kowalewski, D. Kruk, G. Parigi, Adv. Inorg. Chem. 57, 41 (2005)
  • [3] R. Kimmich, E. Anoardo, Prog. Nucl. Magn. Reson. Spectrosc. 44, 257 (2004)
  • [4] C.P. Slichter, Principles of Magnetic Resonance, Springer, Berlin 1990
  • [5] A.G. Redfield, Adv. Magn. Reson. 1, 1 (1965)
  • [6] A.G. Redfield, in: Encyclopedia of Nuclear Magnetic Resonance, Ed. D.M. Grant, R.K. Harris, Wiley, Chichester 1996, p. 4085
  • [7] T. Nilsson, J. Kowalewski, J. Magn. Reson. 146, 345 (2000)
  • [8] N. Benetis, J. Kowalewski, L. Nordenskiöld, H. Wennerström, P.-O. Westlund, Mol. Phys. 48, 329 (1983)
  • [9] T. Nilsson, G. Parigi, J. Kowalewski, J. Phys. Chem. A 106, 4476 (2002)
  • [10] T. Nilsson, J. Svoboda, P.-O. Westlund, J. Kowalewski, J. Chem. Phys. 10, 6364 (1998)
  • [11] N. Benetis, J. Kowalewski, J. Magn. Reson. 65, 13 (1985)
  • [12] E. Belorizky, P.H. Fries, J. Kowalewski, D. Kruk, R.R. Sharp, P.-O. Westlund, J. Chem. Phys. 128, 052315 (2008)
  • [13] D. Kruk, J. Kowalewski, J. Chem. Phys. 130, 174104 (2009)
  • [14] D. Kruk, J. Kowalewski, S. Tipikin, J.H. Freed, J. Moscicki, A. Mielczarek, M. Port, J. Chem. Phys. 134, 024508 (2011)
  • [15] S.A. Goldman, G.V. Bruno, C.F. Polnaszek, J.H. Freed, J. Chem. Phys. 56, 716 (1972)
  • [16] J.H. Freed, in: Spin Labeling Theory and Applications, Vol. 53, Ed. L.J. Berliner, Academic Press, New York 1976
  • [17] G. Moro, J.H. Freed, J. Chem. Phys. 74, 3757 (1981)
  • [18] D.J. Schneider, J.H. Freed, Adv. Chem. Phys. 73, 387 (1989)
  • [19] D.J. Schneider, J.H. Freed, Biol. Magn. Reson. 8, 1 (1989)
  • [20] Z. Liang, J.H. Freed, J. Phys. Chem. B 103, 6384 (1999)
  • [21] A. Nevzorov, J.H. Freed, J. Chem. Phys. 112, 1413 (2000)
  • [22] D. Kruk, Theory of Evolution and Relaxation of Multi-Spin Systems, Arima, Bury St Edmunds 2007
  • [23] A.R. Edmunds, Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton 1974
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n278kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.