PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 1A | A-168-A-173
Article title

Quantitative Analysis of Phase Trajectory as the Information about Technical Condition of the Object

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The paper aims to describe the potential use of phase trajectory for damage detection of structural components. The attractor of the examined trajectory is a static equilibrium point of the element being diagnosed. Two different damage indices are proposed to evaluate the severity of damage in the diagnosed component. The first one refers to distance between a point on a trajectory and the point which is the attractor of the trajectory. The other one relates to linearity of the Poincaré map. Effectiveness of the proposed method was evaluated on: a simple model with two degrees of freedom, data from the finite element method model of a cantilever beam with a crack, and experimental data for a cracked plate. With the proposed method, the damage can be quickly and effectively detected. By comparing the current trajectory with that from the previous diagnostic test, it is possible to establish if the nature of crack is either propagating or stationary.
Keywords
EN
Contributors
author
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Mechanics and Vibroacoustics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
References
  • [1] A. Grandt, Fundamentals of Structural Integrity: Damage Tolerant Design and Nondestructive Evaluation, Hoboken, 2004
  • [2] M. Cerri, G. Ruta, J. Sound Vibrat. 270, 39 (2004)
  • [3] J. Fernandez-Saez, C. Navarro, J. Sound Vibrat. 256, 17 (2002)
  • [4] S.K. Maiti, S.M. Wathare, Int. J. Fracture 141, 339 (2006)
  • [5] L. Majkut, Arch. Acoust. 31, 17 (2006)
  • [6] J. Lee, J. Sound Vibrat. 320, 482 (2009)
  • [7] L. Majkut, Latin Am. J. Solids Struct. 7, 423 (2010)
  • [8] L. Majkut, Latin Am. J. Solids Struct. 7, 437 (2010)
  • [9] J.-T. Kim, Y.-S. Ryu, H.-M. Cho, N. Stubbs, Eng. Struct. 25, 57 (2003)
  • [10] B. Kim, S. Yoo, S. Lee, S. Baik, Key Eng. Mater. 321-323, 1620 (2006)
  • [11] J. Morlier, F. Bos, P. Castera, Key Eng. Mater. 293-294, 305 (2005)
  • [12] S. Caddemi, I. Calin, J. Sound Vibrat. 327, 473 (2009)
  • [13] M. Chandrashekhar, R. Ganguli, J. Sound Vibrat. 326, 939 (2009)
  • [14] S.-E. Fang, R. Perera, J. Sound Vibrat. 324, 40 (2009)
  • [15] G. Kawiecki, Smart Mater. Struct. 10, 466 (2001)
  • [16] C. Kyriazoglou, B. Le Page, F. Guild, Composites Part A: Appl. Sci. Manufact. 35, 945 (2004)
  • [17] M. Cao, Q. Ren, P. Qiao, Key Eng. Mater. 324-325, 343 (2006)
  • [18] G.M. Owolabi, A.S.J. Swamidas, R. Seshadri, J. Sound Vibrat. 265, 1 (2003)
  • [19] J. Lee, J. Sound Vibrat. 326, 205 (2009)
  • [20] J. Sawicki, M. Friswell, Z. Kulesza, A. Wroblewski, J. Lekki, J. Sound Vibrat. 330, 1365 (2011)
  • [21] L. Wang, Z. Yang, T.P. Waters, J. Sound Vibrat. 329, 5070 (2010)
  • [22] U. Andreaus, P. Baragatti, J. Sound Vibrat. 330, 721 (2011)
  • [23] M. Dilena, A. Morassi, J. Sound Vibrat. 276, 195 (2004)
  • [24] J. Sinha, M. Friswell, Computers Structures 80, 1473 (2002)
  • [25] S. El-Ouafi Bahlous, H. Smaoui, S. El-Borgi, J. Sound Vibrat. 325, 49 (2009)
  • [26] A. Chatterjee, J. Sound Vibrat. 329, 3325 (2010)
  • [27] C.R.P. Courtney, S.A. Neild, P.D. Wilcox, B.W. Drinkwater, J. Sound Vibrat. 329, 4279 (2010)
  • [28] J.M. Nichols, C.C. Olson, J. Sound Vibrat. 329, 1165 (2010)
  • [29] H. Gökdag, O. Kopmaz, J. Sound Vibrat. 324, 1158 (2009)
  • [30] U. Jung, B.-H. Koh, J. Sound Vibrat. 321, 590 (2009)
  • [31] K.V. Nguyen, H.T. Tran, J. Sound Vibrat. 329, 4455 (2010)
  • [32] W. Staszewski, C. Boller, G. Tomlinson, Health Monitoring of Aerospace Structures, Wiley, Chichester 2004
  • [33] G. Baker, J. Gollub, Chaotic Dynamics: An Introduction, Cambridge University Press, Cambridge 1990
  • [34] W. Batko, L. Majkut, Arch. Metal. Mater. 52, 389 (2007)
  • [35] W. Batko, L. Majkut, Arch. Metal. Mater. 55, 757 (2010)
  • [36] L. Majkut, Biuletyn Wojskowej Akademii Technicznej (Military University of Technology) 59, 181 (2010) (in Polish)
  • [37] I. Trendafilova, E. Manoach, Mech. Syst. Sign. Proc. 22, 1092 (2008)
  • [38] H. Abarbanel, Analysis of Observed Chaotic Data, Springer, New York 1996
  • [39] H. Schuster, Deterministic Chaos: An Introduction, Wiley, Weinheim 1995
  • [40] J. Nichols, M. Seaver, S. Trickey, J. Sound Vibrat. 297, 1 (2006)
  • [41] D. Boomehead, P. King, Physica D 20, 217 (1986)
  • [42] J.B. Elsner, A.A. Tsonis, Singular Spectrum Analysis: A New Tool in Time Series Analysis, Springer, New York 1996
  • [43] N. Pakard, J. Crutchfield, J. Farmer, R. Shaw, Phys. Rev. Lett. 45, 712 (1980)
  • [44] L. Majkut, J. Theor. Appl. Mech. (Warsaw) 47, 193 (2009)
  • [45] A. Darpe, K. Gupta, A. Chawla, J. Sound Vibrat. 269, 33 (2004)
  • [46] H. Nahvi, M. Jabbari, Int. J. Mech. Sci. 47, 1477 (2005)
  • [47] L. Majkut, Vibroacoustic diagnostics of structural components, Publishing House of Institute for Sustainable Technologies, Radom 2010 (in Polish)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n1a36kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.