Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 1A | A-126-A-131

Article title

Modes Orthogonality of the Mechanical System Simple Supported Beam-Actuators-Concentrated Masses

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper deals with simple supported beam-actuators-concentrated masses mechanical system; it appears in active vibration reduction problem. To solve the problem with the Fourier method, the system is discretized into uniform elements. In the paper the orthogonality condition of the modes of the discretized system is derived. Furthermore, the solution of the forced vibration problem of the above system, appearing inherently in the active vibration reduction problem, is outlined.

Keywords

EN

Contributors

author
  • Laboratory of Acoustics, Department of Electrical and Computer Engineering, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszów, Poland

References

  • [1] L. Majkut, Latin Am. J. Solids Struct. 7, 423 (2010)
  • [2] H. Saito, K. Otomi, J. Sound Vibrat. 62, 257 (1979)
  • [3] M.J. Maurizi, P.M. Belles, J. Sound Vibrat. 150, 330 (1991)
  • [4] L. Ercoli, P.A.A. Laura, J. Sound Vibrat. 114, 519 (1987)
  • [5] W.H. Liu, F.H. Yeh, J. Sound Vibrat. 117, 555 (1987)
  • [6] P.M. Przybyłowicz, Monograph 197, Oficyna Wydawnicza PW, Warszawa 2002
  • [7] J. Wiciak, Monograph 175, AGH, Kraków 2008 (in Polish)
  • [8] C.H. Hansen, S.D. Snyder, Active Control of Noise and Vibration, E&FN SPON, London 1997
  • [9] C.R. Fuller, S.J. Elliot, P.A. Nielsen, Active Control of Vibration, Academic Press, London 1997
  • [10] M. Kozień, Monograph 331, PK, Kraków 2006 (in Polish)
  • [11] M.J. Croker, Handbook of Noise and Vibration Control, Wiley, New York 2007
  • [12] F. Charette, A. Berry, C. Guigou, J. Intellig. Mater. Syst. Struct. 8, 513 (1998)
  • [13] J.A. Hernandes, S.F.M. Almeida, A. Nabarrete, Composite Struct. 49, 55 (2000)
  • [14] W.J. Sheu, R.T. Huang, C.C. Wang, Sensors Actuators A 148, 115 (2008)
  • [15] M. Pietrzakowski, Monograph 204, Oficyna Wydawnicza PW, Warszawa 2004
  • [16] A. Brański, Acoustic Waves, InTech, Rijeka, Croatia 2011, Ch. 18, p. 397
  • [17] A. Brański, in: Proc. XVIII Conf. on Acoustic and Biomedical Engineering, Eds. Z. Damijan, J. Wiciak, Kraków-Zakopane (Poland) 2011, p. 102
  • [18] S. Kasprzyk, M. Wiciak, Opuscula Mathematica 27, 245 (2007)
  • [19] C.N. Bapat, C. Bapat, J. Sound Vibrat. 112, 177 (1987)
  • [20] S. Kaliski, Vibrations and Waves, PWN, Warszawa 1986 (in Polish)
  • [21] C.W de Silva, Vibration, Fundamentals and Practice, CRC Press, Boca Raton 2000
  • [22] K.H. Low, S. Naguleswaran, J. Sound Vibrat. 215, 381 (1998)

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n1a27kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.