Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 1A | A-100-A-109

Article title

The Acoustic Pressure Radiated by a Vibrating Circular Plate within the Fraunhofer Zone of the Three-Wall Corner Region

Content

Title variants

Languages of publication

EN

Abstracts

EN
The Neumann boundary value problem has been solved for the region bounded by the three perfect rigid infinite baffles arranged perpendicularly to one another. The harmonically vibrating clamped circular plate embedded in one of the baffles is the sound source. It has been assumed that the amplitude of the plate's transverse vibrations is small to use the linear Kelvin-Voigt theory. The Green function has been applied to obtain the asymptotic formulae describing the distribution of the acoustic pressure within the Fraunhofer zone. The analysis of sound radiation has been performed for some selected surface excitations and for some different plate's locations. The acoustic pressure distribution has been examined including the acoustic attenuation and the internal attenuation of the plate's material.

Keywords

Year

Volume

121

Issue

1A

Pages

A-100-A-109

Physical description

Dates

published
2012-01

Contributors

author
  • Department of Acoustics, Institute of Physics, University of Rzeszów, T. Rejtana 16A, 35-310 Rzeszów, Poland
author
  • Department of Acoustics, Institute of Physics, University of Rzeszów, T. Rejtana 16A, 35-310 Rzeszów, Poland
author
  • Department of Acoustics, Institute of Physics, University of Rzeszów, T. Rejtana 16A, 35-310 Rzeszów, Poland

References

  • [1] R.L. Pritchard, J. Acoust. Soc. Am 32, 730 (1960)
  • [2] E.M. Arase, J. Acoust. Soc. Am. 36, 1521 (1964)
  • [3] H. Levine, J. Sound Vibrat. 89, 447 (1983)
  • [4] A. Berry, J.L. Guyader, J. Nicolas, J. Acoust. Soc. Am. 86, 2792 (1990)
  • [5] M.R. Lee, R. Singh, J. Acoust. Soc. Am. 95, 3311 (1994)
  • [6] J.P. Arenas, Int. J. Occupat. Safety Ergon. 15, 401 (2009)
  • [7] H. Levine, F.G. Leppington, J. Sound Vibrat. 121, 269 (1988)
  • [8] D. Zou, M.J. Crocker, Archiv. Acoust. 34, 25 (2009)
  • [9] H. Lee, R. Singh, J. Sound Vibrat. 282, 313 (2005)
  • [10] J. Cieślik, J. Pieczara, Archiv. Acoust. 33 (4 Suppl.), 201 (2008)
  • [11] M. Yairi, K. Sakagami, Appl. Acoust. 63, 737 (2002)
  • [12] N. Hashimoto, Appl. Acoust. 62, 429 (2001)
  • [13] D. Zou, M.J. Crocker, Archiv. Acoust. 34, 13 (2009)
  • [14] M. Kozupa, J. Wiciak, Acta Phys. Pol. A 118, 95 (2010)
  • [15] L. Leniowska, Archiv. Acoust. 34, 507 (2009)
  • [16] M. Pawełczyk, Archiv. Acoust. 33, 509 (2008)
  • [17] W. Batko, M. Kozupa, Archiv. Acoust. 33(S4), 195 (2008)
  • [18] S.M. Hasheminejad, M. Azarpeyvand, Shock Vibrat. 11, 625 (2004)
  • [19] W.P. Rdzanek, K. Szemela, Archiv. Acoust. 32, 339 (2007)
  • [20] W.P. Rdzanek, K. Szemela, D. Pieczonka, Archiv. Acoust. 32, 883 (2007)
  • [21] W.P. Rdzanek, W.J. Rdzanek, K. Szemela, Archiv. Acoust. 34, 75 (2009)
  • [22] W.P. Rdzanek, K. Szemela, D. Pieczonka, Archiv. Acoust. 36, 121 (2011)
  • [23] K. Szemela, W. Rdzanek, D. Pieczonka, Acta Phys. Pol. A 119, 1050 (2011)
  • [24] L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New York 1967
  • [25] P.M. Morse, K.U. Ingard, Theoretical Acoustics, McGraw-Hill, Princeton 1968
  • [26] H. Weyl, Ann. Phys. 60, 481 (1919)
  • [27] N.W. McLachlan, Bessel Functions for Engineers, Clarendon Press, Oxford 1955
  • [28] A.W. Leissa, Vibration of Plates, Vol. SP-160, NASA, U.S. Government Printing Office, Washington 1969
  • [29] E. Skudrzyk, Simple and Complex Vibration Systems, Pennsylvania State University Press, London 1968 %

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv121n1a23kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.