Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 1A | A-78-A-81
Article title

The Effect of Amplitude Modulated Contralateral Signals on Distortion Product Otoacoustic Emissions

Title variants
Languages of publication
Contralateral stimulation of the auditory system causes changes in levels of otoacoustic emissions. The main objective of this study was to determine the changes in the level of distortion product otoacoustic emissions for contralaterally presented unmodulated broad-band noise, or amplitude modulated broad-band noise. Two types of modulating signal were used in the investigations (sine or rectangular wave form). The modulation depth was 100% for both the sinusoidal and the rectangular modulation. The modulation rate was 4 or 100 Hz. The generation and acquisition of the distortion product otoacoustic emissions signal lasted 2 s. The values of the distortion product otoacoustic emissions level changes were defined as the difference between the mean distortion product otoacoustic emissions levels with and without contralateral stimulation. Ten normal-hearing subjects participated in this study. The results showed that reduction in the level of the distortion product otoacoustic emissions (suppression effect) was highest for the low F_2 frequencies and decreased along with the increase in the F_2 frequency. The modulation type of the contralateral stimulation did not influence the mean suppression effect significantly. However, the distortion product otoacoustic emissions level reduction reached higher values for the unmodulated contralateral stimulation than for the modulated, and these differences were statistically significant.
Physical description
  • Institute of Acoustics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
  • [1] D.T. Kemp, Hear Res. 22, 95 (1986)
  • [2] R. Probst, B.L. Lonsbury-Martin, G.K. Martin, J. Acoust. Soc. Am. 89, 2027 (1991)
  • [3] X.M. Sun, J. Acoust. Soc. Am. 123, 4310 (2008)
  • [4] S. Chery-Croze, A. Moulin, L. Collet, Hear Res. 68, 53 (1993)
  • [5] G. Lisowska, J. Smurzynski, K. Morawski, G. Namyslowski, R. Probst, Acta Otolaryngol. 122, 613 (2002)
  • [6] J.J. Guinan, Jr., Ear Hear 27, 589 (2006)
  • [7] C. Abdala, Hear Res. 121, 125 (1998)
  • [8] M.P. Gorga, S.T. Neely, P.A. Dorn, D. Konrad-Martin, J. Acoust. Soc. Am. 111, 271 (2002)
  • [9] F. Zhang, F.A. Boettcher, X.M. Sun, Int. J. Audiol. 46, 187 (2007)
  • [10] A.L. James, R.J. Mount, R.V. Harrison, Clin. Otolaryngol. Appl. Sci. 27, 106 (2002)
  • [11] D.W. Purcell, B.E. Butler, T.J. Saunders, P. Allen, J. Acoust. Soc. Am. 124, 2133 (2008)
  • [12] E. Ozimek, A. Wicher, in: XXVIII Int. Congress of Audiology, Innsbruck (Austria), 2006, p. 43
  • [13] A. Wicher, Ear Hear 2011, submitted for publication
  • [14] J. Muller, T. Janssen, G. Heppelmann, W. Wagner, J. Acoust. Soc. Am. 118, 3747 (2005)
  • [15] D.S. Velenovsky, T.J. Glattke, Hear Res. 164, 39 (2002)
  • [16] S.R. Atcherson, M.J. Martin, R. Lintvedt, Neurosci. Lett. 438, 107 (2008)
  • [17] J.J. Guinan, Jr., B.C. Backus, W. Lilaonitkul, V. Aharonson, J. Assoc. Res. Otolaryngol. 4, 521 (2003)
  • [18] J.J. Guinan, in: The Cochlea, Eds. P.J. Dallos, A.N. Popper, R.R. Fay, Springer-Verlag, New York 1996, p. 435
  • [19] S. Maison, C. Micheyl, L. Collet, J. Neurophysiol. 77, 1759 (1997)
  • [20] C. Micheyl, S. Maison, R.P. Carlyon, G. Andeol, L. Collet, J. Acoust. Soc. Am. 105, 293 (1999)
  • [21] S. Maison, C. Micheyl, L. Collet, Neuroscience 91, 133 (1999)
  • [22] R.V. Harrison, A. Sharma, T. Brown, S. Jiwani, A.L. James, Acta Otolaryngol. 128, 404 (2008)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.