PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 121 | 1 | 214-216
Article title

ZnO Nanorods on Nanofibrous ZnO Seed Layers by Hydrothermal Method and Their Annealing Effects

Content
Title variants
Languages of publication
EN
Abstracts
EN
ZnO nanorods were grown by using the hydrothermal method on p-type Si (100) substrates with nanofibrous ZnO seed layers. Before the ZnO nanorods growth, nanofibrous ZnO seed layers were spin-coated onto the Si substrates. The structural and optical properties of ZnO nanorods were characterized by scanning electron microscopy, X-ray diffraction, and photoluminescence. The fibrous ZnO nanorods is possible due to the surface morphology of the nanofibrous ZnO seed layers. To investigate annealing effects of the ZnO nanorods, the post-annealing process was carried out at various temperatures ranging from 300 to 700C under argon conditions. The structural and optical properties of the ZnO nanorods were also affected by the post-annealing treatment.
Keywords
EN
Contributors
author
  • Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea
author
  • SMS PE Team 5, MagnaChip Semiconductor Ltd., Gumi 730-723, Republic of Korea
author
  • Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea
author
  • School of Nano Engineering, Inje University, Gimhae 621-749, Republic of Korea
author
  • School of Nano Engineering, Inje University, Gimhae 621-749, Republic of Korea
author
  • Epi-manufacturing Technology, Samsung LED Co. Ltd., Suwon 443-373, Republic of Korea
author
  • Division of Advanced Materials Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
author
  • Department of Physics, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712-749, Republic of Korea
author
  • Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea
  • SMS PE Team 5, MagnaChip Semiconductor Ltd., Gumi 730-723, Republic of Korea
References
  • 1. W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002)
  • 2. S. Oh, M. Jung, J. Koo, Y. Cho, S. Choi, S. Yi, G. Kil, J. Chang, Physica E 42, 2285 (2010)
  • 3. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003)
  • 4. Y. Li, G.W. Meng, L.D. Zhang, Appl. Phys. Lett. 76, 2011 (2000)
  • 5. Y.J. Xing, Z.H. Xi, Z.Q. Xue, X.D. Zhang, J.H. Song, Appl. Phys. Lett. 83, 1689 (2003)
  • 6. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Science 293, 1455 (2001)
  • 7. J.-J. Wu, S.-C. Liu, J. Phys. Chem. B 106, 9546 (2002)
  • 8. S.-H. Park, S.-Y. Seo, S.-H. Kim, Appl. Phys. Lett. 88, 251903 (2006)
  • 9. J. Zhao, Z.-G. Jin, T. Li, X.-X. Liu, J. Eur. Ceram. Soc. 26, 2796 (2006)
  • 10. B.H. Kong, H.K. Cho, J. Cryst. Growth 289, 370 (2006)
  • 11. D.C. Kim, B.H. Kong, H.K. Cho, D.J. Park, J.Y. Lee, Nanotechnology 18, 015603 (2007)
  • 12. S.-D. Lee, Y.-S. Kim, M.-S. Yi, J.-Y. Choi, S.-W. Kim, J. Phys. Chem. C 113, 8954 (2009)
  • 13. M.S. Kim, K.G. Yim, M.Y. Cho, J.-Y. Leem, D.-Y. Lee, J.S. Kim, J.S. Kim, J.-S. Son, J. Korean Phys. Soc. 58, 515 (2011)
  • 14. S.-H. Jeong, B.-S. Kim, B.-T. Lee, Appl. Phys. Lett. 82, 2625 (2003)
  • 15. Y.-Y. Peng, T.-E. Hsieh, C.-H. Hsu, Nanotechnology 17, 174 (2006)
  • 16. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (1998)
  • 17. S.W. Xue, X.T. Zu, W.G. Zheng, M.Y. Chen, X. Xing, Physica B 382, 201 (2006)
  • 18. A.P. Vajpeyi, S. Tripathy, S.J. Chua, E.A. Fitzgerald, Physica E 28, 141 (2005)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv121n166kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.