PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 6A | A-100-A-113
Article title

Level Curvature Distribution: from Bulk to the Soft Edge of Random Hermitian Matrices

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Level curvature is a measure of sensitivity of energy levels of a disordered/chaotic system to perturbations. In the bulk of the spectrum random matrix theory predicts the probability distributions of level curvatures to be given by the Zakrzewski-Delande expressions. Motivated by growing interest in statistics of extreme (maximal or minimal) eigenvalues of disordered systems of various nature, it is natural to ask about the associated level curvatures. We show how calculating the distribution for the curvatures of extreme eigenvalues in Gaussian unitary ensemble can be reduced to studying asymptotic behaviour of orthogonal polynomials appearing in the recent work of Nadal and Majumdar. The corresponding asymptotic analysis being yet outstanding, we instead will discuss solution of a related, but somewhat simpler problem of calculating the level curvature distribution averaged over all the levels in a spectral window close to the edge of the semicircle. The method is based on asymptotic analysis of kernels associated with Hermite polynomials and their Cauchy transforms, and is straightforwardly extendable to any rotationally-invariant ensemble of random matrices.
Keywords
EN
Contributors
author
  • School of Mathematical Sciences, University of Nottingham, Nottingham NG72RD, England, UK
References
  • [1] C.A. Tracy, H. Widom, Commun. Math. Phys. 159, 151 (1994)
  • [2] A. Soshnikov, Commun. Math. Phys. 207, 697 (1999); S. Sodin, J. Stat. Phys. 136, 834 (2009)
  • [3] K. Johansson, Commun. Math. Phys. 209, 437 (2000); T. Sasamoto, H. Spohn, Nucl. Phys. B 834, 523 (2010); P. Calabrese, P. Le Doussal, A. Rosso, Europhys. Lett. 90, 20002 (2010); V. Dotsenko, Europhys. Lett. 90, 20003 (2010)
  • [4] M.G. Vavilov, P.W. Brouwer, V. Ambegaokar, C.W.J. Beenakker, Phys. Rev. Lett. 86, 874 (2001)
  • [5] M. Fridman, R. Pugatch, M. Nixon, A. A. Friesem, N. Davidson, e-preprint arXiv:1012.1282
  • [6] F. Haake, Quantum Signatures of Chaos, 3rd ed., Springer, Berlin 2010
  • [7] K. Zakrzewski, D. Delande, Phys. Rev. E 47, 1650 (1993)
  • [8] F. von Oppen, Phys. Rev. Lett. 73, 798 (1994); F. von Oppen, Phys. Rev. E 51, 2647 (1995)
  • [9] Y.V. Fyodorov, H.-J. Sommers, Z. Phys. B 99, 123 (1995); Y.V. Fyodorov, H.-J. Sommers, Phys. Rev. E 51, R2719 (1995)
  • [10] G. Ergun, Y.V. Fyodorov, Phys. Rev. E 68, 046124 (1995)
  • [11] J.M. Kosterlitz, D.J. Thouless, R.C. Jones, Phys. Rev. Lett. 36, 1217 (1976)
  • [12] C. Nadal, S.N. Majumdar, J. Stat. Mech. 2011, 04001 (2011)
  • [13] T. Jiang, Ann. Prob. 34, 1497 (2006)
  • [14] Y.V. Fyodorov, E. Strahov, J. Phys. A 36, 3203 (2003)
  • [15] E. Strahov, Y.V. Fyodorov, Commun. Math. Phys. 241, 343 (2003)
  • [16] P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, AMS, New York 1998
  • [17] Y.V. Fyodorov, C. Nadal, S. Majumdar, unpublished
  • [18] Y.V. Fyodorov, in: 'Recent Perspectives in Random Matrix Theory and Number Theory', London Mathematical Society Lecture Note Series, Vol. 322, Eds. F. Mezzardi, N.C. Snaith, Cambridge Univesity Press 2005, [arXiv:math-ph/0412017]
  • [19] G. Akemann, Y.V. Fyodorov, Nucl. Phys. B 664, 457 (2003)
  • [20] E. Brezin, H. Hikami, Phys. Rev. E 62, 3558 (2000)
  • [21] P.J. Forrester, Nucl. Phys. B 402, 709 (1993)
  • [22] P. Gaspard, S.A. Rice, H.J. Mikeska, K. Nakamura, Phys. Rev. A 42, 4015 (1990)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n6ap54kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.