Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 6A | A-85-A-88

Article title

Fading Statistics in Communications - a Random Matrix Approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
Fading is the time-dependent variations in signal strength measured at a receiver, due to temporally evolving multipath scattering and interference. In our previous work we introduced a statistical fading model for the time-reversal invariant case by combining the predictions of random matrix theory with the random coupling model that includes system-specific properties such as the radiation impedance of the ports and short-orbit effects. In the high-loss limit this random matrix theory model reduced to the most common fading models in the wireless communication field. In this paper we discuss the theoretical model in more detail and extend it to the case of broken time-reversal invariance.

Keywords

Contributors

author
  • University of Maryland, College Park, MD 20742, USA
author
  • University of Maryland, College Park, MD 20742, USA
author
  • University of Maryland, College Park, MD 20742, USA
author
  • University of Maryland, College Park, MD 20742, USA

References

  • [1] M.L. Mehta, Random Matrices, 2nd ed., Academic Press, Boston 1991
  • [2] E.P. Wigner, Ann. Math. 53, 36 (1951)
  • [3] E.P. Wigner, Ann. Math. 62, 548 (1955)
  • [4] E.P. Wigner, Ann. Math. 65, 203 (1957)
  • [5] E.P. Wigner, Ann. Math. 67, 325 (1958)
  • [6] F. Haake, Quantum Signatures of Chaos, Springer-Verlag, New York 1991
  • [7] H.J. Stöckmann, Quantum Chaos, Cambridge University Press, Cambridge, England 1999
  • [8] R.G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York 1966
  • [9] V. Pagneux, A. Maurel, Phys. Rev. Lett. 86, 1199 (2001)
  • [10] P.W. Brouwer, C.W.J. Beenakker, Phys. Rev. B 55, 4695 (1997)
  • [11] Y. Alhassid, Rev. Mod. Phys. 75, 895 (2000)
  • [12] P.A. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems, Oxford University Press, New York 2004
  • [13] U. Kuhl, M. Martínez-Mares, R.A. Méndez-Sánchez, H.-J. Stöckmann, Phys. Rev. Lett. 94, 144101 (2005)
  • [14] S. Hemmady, Ph.D. thesis, University of Maryland, College Park 2006
  • [15] M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer-Verlag, New York 1990
  • [16] E. Ott, Chaos in Dynamical Systems, 2nd ed., Cambridge University Press, New York 2002
  • [17] H.-J. Stöckmann, J. Stein, Phys. Rev. Lett. 64, 2215 (1990)
  • [18] P. So, S.M. Anlage, E. Ott, R.N. Oerter, Phys. Rev. Lett. 74, 2662 (1995)
  • [19] O. Bohigas, M.J. Giannoni, C. Schmidt, Phys. Rev. Lett. 51, 1 (1984)
  • [20] J.-H. Yeh, E. Ott, T.M. Antonsen, S.M. Anlage, Phys. Rev. E 85, 015202(R) (2012)
  • [21] M. Simon, M.-S. Alouini, Digital Communication over Fading Channels, 2nd ed., Wiley-Interscience, Hoboken, NJ 2005
  • [22] G.L. Stüber, Principles of Mobile Communications, Kluwer Academic Publishers, Norwell, MA 1996
  • [23] G.J. Foschini, Bell Labs Technical J. 1, 41 (1996)
  • [24] O. Delangre, P. Doncker, M. Lienard, P. Degauque, C.R. Physique 11, 30 (2010)
  • [25] M. Nakagami, in: Statistical Methods in Radio Wave Propagation, Ed. W.C. Hoffman, Pergamon Press, New York 1960, p. 3
  • [26] A.M. Tulino, S. Verdú, Foundat. Trends Commun. Inf. Theory 1, 1 (2004)
  • [27] A.L. Moustakas, H.U. Baranger, L. Balents, A.M. Sengupta, S.H. Simon, Science 287, 287 (2000)
  • [28] S.H. Simon, A.L. Moustakas, M. Stoytchev, H. Safar, Physics Today 54, 38 (2001)
  • [29] A.L. Moustakas, S.H. Simon, J. Phys. A, Math. Gen. 38, 10859 (2005)
  • [30] V.I. Morgenshtern, H. Bölcskei, IEEE Trans. Informat. Theory 53, 10 (2007)
  • [31] K. Zyczkowski, M. Kus, J. Phys. A, Math. Gen. 27, 4235 (1994)
  • [32] S. Hemmady, X. Zheng, E. Ott, T.M. Antonsen, S.M. Anlage, Phys. Rev. Lett. 94, 014102 (2005)
  • [33] S. Hemmady, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 71, 056215 (2005)
  • [34] S. Hemmady, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 74, 036213 (2006)
  • [35] S. Hemmady, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Acta Phys. Pol. A 109, 65 (2006)
  • [36] S. Hemmady, J. Hart, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. B 74, 195326 (2006)
  • [37] U. Stoffregen, J. Stein, H.-J. Stöckmann, M. Kuś, F. Haake, Phys. Rev. Lett. 74, 14 (1995)
  • [38] S.-H. Chung, A. Gokirmak, D.-H. Wu, J.S.A. Bridgewater, E. Ott, T.M. Antonsen, S.M. Anlage, Phys. Rev. Lett. 85, 12 (2000)
  • [39] B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, J. Verbaarschot, H.A. Weidenmüller, Phys. Rev. Lett. 103, 06410 (2009)
  • [40] J.A. Hart, T.M. Antonsen, E. Ott, Phys. Rev. E 80, 041109 (2009)
  • [41] J.-H. Yeh, J.A. Hart, E. Bradshaw, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 81, 025201(R) (2010)
  • [42] J.-H. Yeh, J.A. Hart, E. Bradshaw, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 82, 041114 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n6ap51kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.