PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 6 | 1026-1033
Article title

Vickers and Knoop Indentation Microhardness Study of β-SiAlON Ceramic

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, analysis and interpretation of mechanical property measurements of β-SiAlON ceramic were reported. Indentation microhardness of β-SiAlON ceramic was measured using the Knoop and Vickers indenters. The analysis of the Vickers indentation microhardness data reveals the reverse indentation size effect that is the apparent microhardness increases with increasing applied indentation test load. However, the Knoop indentation microhardness data exhibit indentation size effect that is the apparent microhardness increases with decreasing applied test load. The experimental Knoop microhardness data was analyzed using Meyer's law, elastic-plastic deformation model, proportional specimen resistance model, and Hays-Kendall's model. As a result, modified proportional specimen resistance model is found to be the most effective one for the load-independent (H_{LI}) microhardness determination of the SiAlON ceramic. It was seen that different models used to analyze the data obtained from the Vickers indentation do not give the same intrinsic hardness value. We also present the calculation of the Young modulus, E, of the β-SiAlON ceramic.
Keywords
EN
Contributors
author
  • Department of Physics, Micro/Nanomechanic Characterization Laboratory Mustafa Kemal University, Hatay, Turkey
author
  • Department of Physics, Micro/Nanomechanic Characterization Laboratory Mustafa Kemal University, Hatay, Turkey
author
  • Department of Physics, Micro/Nanomechanic Characterization Laboratory Mustafa Kemal University, Hatay, Turkey
author
  • Department of Ceramic Engineering, Dumlupinar University, Kutahya, Turkey
author
  • Materials Science and Engineering Department, Gebze Institute of Technology, Kocaeli, Turkey
  • Department of Physics, Micro/Nanomechanic Characterization Laboratory Mustafa Kemal University, Hatay, Turkey
References
  • 1. J.B. Quinn, G.D. Quinn, J. Mater. Sci. 32, 4331 (1997)
  • 2. G. Constantinidis, R.D. Tomlinson, Philos. Mag. Lett. 57, 91 (1988)
  • 3. C. Ascheron, C. Haase, G. Kuhn, H. Neumann, Cryst. Res. Technol. 24, K33 (1989)
  • 4. R.K. Marwaha, B.S. Shah, Cryst. Res. Technol. 23, K63 (1988)
  • 5. R. Bajpai, S.C. Datt, Indian J. Pure Appl. Phys. 24, 254 (1986)
  • 6. K. Sangwal, Mater. Chem. Phys. 63, 145 (2000)
  • 7. J. Gong, H. Miao, Z. Zhao, Z. Guan, Mater. Sci. Eng. A 303, 179 (2001)
  • 8. B. Basu, Mukhopadhyay, N.K. Manisha, , J. Eur. Ceram. Soc. 29, 801 (2009)
  • 9. O. Şahin, O. Uzun, U. Kölemen, N. ve Uçar, J. Phys., Condens. Matter 19, 306001 (2007)
  • 10. K. Sangwall, B. Surowska, P. Blaziak, Mater. Chem. Phys. 77, 511 (2002)
  • 11. D.D. Graaf, M. Braciszewicz, H.T. Hintzen, M. Sopicka-Lizer, G. De With, J. Mater. Sci. 39, 2145 (2004)
  • 12. F.I. Bulić, I. Zalite, N. Zhilinska, J. Eur. Ceram. Soc. 24, 3303 (2004)
  • 13. X. Xu, T. Nishimura, T. Hirosaki, R.-J. Xie, Y. Yamamoto, H. Tanaka, Nanotechnology 16, 1569 (2005)
  • 14. M. Sopicka-Lizer, T. Pawlik, T. Włodek, M. Tańcula, G. Chernik, Key Eng. Mater. 352, 179 (2007)
  • 15. P.O. Käll, Chem. Scr. 28, 439 (1988)
  • 16. T. Ekström, P.O. Käll, M. Nygren, P.O. Olsson, J. Mater. Sci. 24, 1853 (1989)
  • 17. B. Basu, Mukhopadhyay, N.K. Manisha, , J. Eur. Ceram. Soc. 29, 801 (2009)
  • 18. S. Sebastian, M.A. Khadar, J. Mater. Sci. 40, 1655 (2005)
  • 19. K. Sangwal, B. Surowska, Mater. Res. Innovat. 7, 91 (2003)
  • 20. P. Feltham, R. Banerjee, J. Mater. Sci. 27, 1626 (1992)
  • 21. G.R. Antis, P. Chantikol, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981)
  • 22. G.M. Pharr, D.S. Harding, W.C. Oliver, in: Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Eds. M. Nastasi, D. M Parkin, H. Gleiter, Kluwer Academic Press, 1993, p. 449
  • 23. C. Hays, E.G. Kendall, Metallurgy 6, 275 (1973)
  • 24. H. Li, R.C. Bradt, J. Mater. Sci. 28, 917 (1993)
  • 25. H. Li, R.C. Bradt, J. Mater. Sci. 31, 1065 (1996)
  • 26. G.P. Upit, S.A. Varchenya, in: The Science of Hardness Testing and Its Research Applications, Eds. J.H. Westbrook, H. Conrad, American Society for Metals, Metals Park, OH 1973, p. 144
  • 27. H. Li, R.C. Bradt, J. Mater. Sci. 28, 917 (1993)
  • 28. J.B. Quinn, G.D. Quinn, J. Mater. Sci. 32, 4331 (1997)
  • 29. E. Sahin, M.Sc. Thesis, Mustafa Kemal University, 2011
  • 30. C. Shaw, Y. Li, H. Jones, Mater. Lett. 28, 33 (1996)
  • 31. M. Atkinson, H. Shi, Mater. Sci. Technol. 5, 613 (1989)
  • 32. M. Atkinson, J. Mater. Res. 10, 2908 (1995)
  • 33. H. Shi, M. Atkinson, J. Mater. Sci. 25, 2111 (1990)
  • 34. B.R. Lawn, V.R. Howes, J. Mater. Sci. 16, 2745 (1981)
  • 35. D.B. Marshall, T. Noma, A.G. Evans, J. Am. Ceram. Soc. 65, 175 (1982)
  • 36. D. Chicot, D. Mercier, F. Roudet, K. Silva, M.H. Staia, J. Lesage, J. Eur. Ceram. Soc. 27, 1905 (2007)
  • 37. D.B. Marshall, T. Noma, A.G. Evans, J. Am. Ceram. Soc. 65, 175 (1982)
  • 38. P.J. Blau, The Lab Handbook of Microindentation Hardness Testing., Blue Rock Technical Publications, Oak Ridge, TN 2000, Sect. 5.2
  • 39. R.S. Lima, A. Kucuk, C.C. Berndt, Surf. Coat. Technol. 135, 166 (2001)
  • 40. L.J. Gauckler, S. Prietzel, G. Bodmer, G. Petzow, in: Nitrogen Ceramics, Ed. F.L. Riley, Riby, Leiden, Noordhoff 1997, p. 529
  • 41. G.Z. Cao, R. Metselaar, Chem. Mater. 3, 242 (1991)
  • 42. Z. Krstic, V.D. Krstic, J. Europ. Ceram. Soc. 28, 1723 (2008)
  • 43. O. Şahin, O. Uzun, M. Sopicka-Lizer, H. Göçmez, U. Kölemen, J. Europ. Ceram. Soc. 28, 1235 (2008)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n608kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.