PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 6 | 987-991
Article title

Solutions of One-Dimensional Effective Mass Schrödinger Equation for PT-Symmetric Scarf Potential

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The one-dimensional effective mass Schrödinger equation for PT-symmetric Scarf potential is investigated. The analytical expressions of energy eigenvalue and corresponding wave function are presented. They are accomplished by using an appropriate coordinate transformation to map the transformed exactly solvable one-dimensional Schrödinger equation with constant mass into the position-dependent mass equation. In the computation, three different forms of mass distributions are considered.
Keywords
EN
Contributors
author
  • Faculty of Science, Xi’an University of Architecture and Technology, Xi’an, 710055, People’s Republic of China
author
  • Faculty of Science, Xi’an University of Architecture and Technology, Xi’an, 710055, People’s Republic of China
author
  • Faculty of Science, Xi’an University of Architecture and Technology, Xi’an, 710055, People’s Republic of China
author
  • Faculty of Science, Xi’an University of Architecture and Technology, Xi’an, 710055, People’s Republic of China
References
  • 1. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 3rd ed., Pergamon Press, London 1977
  • 2. S. Flügge, Practical Quantum Mechanics, Springer-Verlag, Berlin 1974
  • 3. B.G. Bagrov, D.M. Gitman, Exact Solutions of Relativistic Wave Equations, Kluwer Academic Publisher, London 1990
  • 4. W.C. Qiang, J.Y. Wu, S.H. Dong, Phys. Scr. 79, 065011 (2009)
  • 5. A.P. Zhang, W.C. Qiang, High Energy Nucl. Phys. 31, 1027 (2007)
  • 6. R. Dutt, A. Gangopadhyaya, U.P. Sukhatme, Am. J. Phys. 65, 400 (1997)
  • 7. L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)
  • 8. I. Sökmen, Phys. Lett. A 115, 249 (1986)
  • 9. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A, Math. Gen. 36, 11807 (2003)
  • 10. A.F. Nikiforov, V.B. Uvarov, Special Function of Mathematical Physics, Birkhauser, Basel 1988
  • 11. J.M. Levy-Leblond, Phys. Rev. A 52, 1845 (1995)
  • 12. B. Gönül, D. Tutcu, O. Ozer, Mod. Phys. Lett. A 17, 2057 (2002)
  • 13. B. Gönül, O. Ozer, F. Üzgün, Mod. Phys. Lett. A 17, 2453 (2002)
  • 14. A.D. Alhaidari, Phys. Rev. A 66, 042116 (2002)
  • 15. C.Y. Cai, Z.Z. Ren, G.X. Ju, Acta Phys. Sin. 54, 2528 (2005)
  • 16. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Edition de Physique, Les Ulis, France 1988
  • 17. L. Serra, E. Lipparini, Europhys. Lett. 40, 667 (1997)
  • 18. M. Barranco, M. Pi, S.M. Gatica, E.S. Hernandez, J. Navarro, Phys. Rev. B 56, 8997 (1997)
  • 19. F. Arias de Savedra, J. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B 50, 4248 (1997)
  • 20. C. Weisbuch, B. Vinter, Quantum Semiconductor Heterostructure, Academic Press, New York 1993
  • 21. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)
  • 22. Z. Ahmed, Phys. Lett. A 290, 19 (2001)
  • 23. R.N. Deb, A. Khare, B.D. Roy, Phys. Lett. A 307, 215 (2003)
  • 24. N. Hatano, D.R. Nelson, Phys. Rev. B 56, 8651 (1997)
  • 25. D.R. Nelson, N.M. Shnerb, Phys. Rev. E 58, 1383 (1998)
  • 26. J.B. Gong, Qing-hai Wang, Phys. Rev. A 82, 012103 (2010)
  • 27. N.N. Bogolubov, A.A. Logunov, I.I. Todorov, Introduction to Axiomatic Field Theory, Benjamin, New York 1975
  • 28. C.S. Jia, Y. Sun, Y. Li, Phys. Lett. A 305, 231 (2002)
  • 29. G. Lévai, Phys. Lett. A 372, 6484 (2008)
  • 30. A.P. Zhang, W.C. Qiang, Y.W. Ling, Chin. Phys. Lett. 26, 100302-1 (2009)
  • 31. R. Roychoudhury, P. Roy, J. Phys. A, Math. Theor. 40, F617 (2007)
  • 32. N.N. Lebedev, Special Function and Their Application, Prentice-Hall, Englewood Cliffs, NJ 1965
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n602kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.