Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 5 | 942-945
Article title

Optical Properties of Black Silicon with Precipitated Silver and Gold Nanoparticles

Title variants
Languages of publication
Black porous silicon is a new material with low light reflectance and high light absorbance values. Black porous silicon layers are especially useful and important in solar energy conversion. In this work black porous silicon plates were prepared by wet chemical metal-assisted method. Silver and gold nanoparticles were precipitated from colloidal silver nitrate and chloroauric acid solutions. Obtained black porous silicon samples with precipitated nanoparticles were investigated by scanning electron microscope combined with energy dispersive X-ray spectrometer, ultraviolet and visible light spectrometer, the Fourier transformation infrared spectrometer. Scanning electron microscopy and energy dispersive X-ray analysis have revealed the presence of silver and gold nanoparticles on black porous silicon surface. Silver nanoparticles size varied from 30 to 100 nm, gold - from 20 to 70 nm. During UV-VIS analysis significant changes in reflectance of processed black porous silicon samples were obtained. Reflectance of black porous silicon samples was lower than 10%. The Fourier transform infrared analysis has revealed decrease in reflectance in far infrared region. Changes in the Fourier transform infrared spectra in "fingerprint" zone prove modification of the surface of black porous silicon layers after precipitation of metal nanoparticles.
  • Institute of Materials Science, Kaunas University of Technology, Savanorių pr. 271, Kaunas, Lithuania
  • Institute of Materials Science, Kaunas University of Technology, Savanorių pr. 271, Kaunas, Lithuania
  • Institute of Materials Science, Kaunas University of Technology, Savanorių pr. 271, Kaunas, Lithuania
  • Institute of Applied Research, Vilnius University, Sauletekio av. 10, Vilnius, Lithuania
  • 1. N. Lalic, Ph.D. Thesis, KTH Royal Institute of Technology Stockholm 2000, p. 1
  • 2. L. Pavesi, V. Mulloni, Appl. Phys. Lett 76, 2523 (2000)
  • 3. M. Lipinski, P. Panek, E. Bielanska, J. Weglowska, H. Czeternastek, Opto-Electron. Rev. 8, 418 (2000)
  • 4. S. Koynov, M.S. Brandt, M. Stutzmann, Appl. Phys. Lett. 88, 203107 (2006)
  • 5. R. Nava, J. Phys. D, Appl. Phys. 43, 455102 (2010)
  • 6. R. Arens-Fischer, M. Krüger, M. Thönissen, V. Ganse, D. Hunkel, M. Marso, H. Lüth, J. Porous Mater. 7, 223 (2000)
  • 7. M.A. Sheehy, B.R. Tull, C.M. Friend, E. Mazur, Mater. Sci. Eng. B 137, 289 (2007)
  • 8. R. Torres, V. Vervisch, M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, J. Ferreira, D. Barakel, S. Bastide, F. Torregrosa, H. Etienne, L. Roux, J. Optoelectron. Adv. Mater. 12, 621 (2010)
  • 9. K.W. Kolasinski, J.D. Hartline, B.T. Kelly, J. Yadlovskiy, Mol. Phys. 108, 1033 (2010)
  • 10. S.Q. Xiao, S. Xu, J. Phys. D, Appl. Phys. 44, 1 (2011)
  • 11. H.A. Atwater, A. Polman, Nature Mater. 9, 205 (2010)
  • 12. C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont, Int. J. Mech. Mater. Eng. 1, 6 (2010)
  • 13. V.S. Tiwari, O. Tovmachenko, G.K. Darbha, W. Hardy, J.P. Singh, P.C. Ray, Chem. Phys. Lett. 446, 77 (2007)
  • 14. A. Šileikaitė, J. Puišo, I. Prosyčevas, S. Tamulevičius, Mater. Sci. (Medžiagotyra) 15, 21 (2009)
  • 15. Z. Kaminskiene, I. Prosycevas, R. Jarimaviciute-Zvalioniene, S. Lapinskas, Advanced Materials and Technologies, the 13th Int. Conf. School, Technologija, Kaunas 2011, p. 135
  • 16. E. Hutter, J.H. Fendler, D. Roy, J. Phys. Chem. B 105, 11159 (2001)
  • 17. L.B. Scaffardi, N. Pellegri, O. de Sanctis, J.O. Tocho, Nanotechnology 16, 158 (2005)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.