Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 5 | 870-873

Article title

CdSe/ZnS Colloidal Quantum Dots with Alloyed Core/Shell Interfaces: A Photoluminescence Dynamics Study

Content

Title variants

Languages of publication

EN

Abstracts

EN
Time-resolved photon counting technique was employed to study dynamics of photoluminescence from the ensemble and single CdSe/ZnS quantum dots with the alloyed core/shell interfaces. The ensemble data revealed enhanced effect of disorder-induced trap states for increasing emission energy, as implied from the changes in the distribution of total decay rates. The emission trajectories collected for single quantum dots showed familiar, two-state blinking pattern. It suggests that in a large-band-offset CdSe/ZnS system, the introduced alloying of the core-to-shell region cannot smooth enough the confinement potential in order to suppress nonradiative Auger recombination and blinking.

Keywords

EN

Year

Volume

120

Issue

5

Pages

870-873

Physical description

Dates

published
2011-11

Contributors

  • Department of Physics, University of Texas at Austin, Austin TX 78712, USA
  • Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
author
  • Department of Physics, University of Texas at Austin, Austin TX 78712, USA
author
  • Department of Physics, University of Texas at Austin, Austin TX 78712, USA
author
  • Department of Physics, University of Texas at Austin, Austin TX 78712, USA
author
  • National Center for Nanoscience and Technology, 100190 Beijing, P.R. China
author
  • National Center for Nanoscience and Technology, 100190 Beijing, P.R. China

References

  • 1. P. Frantsuzov, M. Kuno, B. Janko, R.A. Marcus, Nature Phys. 4, 519 (2008)
  • 2. A.L. Efros, M. Rosen, Phys. Rev. Lett. 78, 1110 (1997)
  • 3. X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G.E. Cragg, A.L. Efros, T.D. Krauss, Nature 459, 686 (2009)
  • 4. G.E. Cragg, A.L. Efros, Nano Lett. 10, 313 (2010)
  • 5. W.K. Bae, K. Char, H. Hur, S. Lee, Chem. Mater. 20, 531 (2008)
  • 6. W.K. Bae, J. Kwak, J.W. Park, K. Char, C. Lee, S. Lee, Adv. Mater. 21, 1690 (2009)
  • 7. A.F. van Driel, I.S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, W.L. Vos, Phys. Rev. B 75, 035329 (2007)
  • 8. A.L. Efros, Phys. Rev. B 46, 7448 (1992)
  • 9. M.D. Leistikow, J. Johansen, A.J. Kettelarij, P. Lodahl, W.L. Vos, Phys. Rev. B 79, 045301 (2009)
  • 10. A.F. van Driel, G. Allan, C. Delerue, P. Lodahl, W.L. Vos, D. Vanmaekelbergh, Phys. Rev. Lett. 95, 236804 (2005)
  • 11. B.R. Fisher, H.J. Eisler, N.E. Stott, M.G. Bawendi, J. Phys. Chem. B 108, 143 (2004)
  • 12. M.G. Bawendi, P.J. Carroll, W.L. Wilson, L.E. Brus, J. Chem. Phys. 96, 946 (1992)
  • 13. A.L. Efros, D.J. Lockwood, L. Tsybeskov, Semiconductor Nanocrystals: from Basic Principles to Applications, Kluwer Academic/Plenum Publ., New York 2003
  • 14. A.D. Arulsamy, U. Cvelbar, M. Mozetic, K. Ostrikov, Nanoscale 2, 728 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n513kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.