Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 5 | 845-848

Article title

Van Der Waals Density Functionals for Graphene Layers and Graphite

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this communication, we present results of theoretical studies of various systems where Van der Waals interaction plays a considerable role. In the first-principle calculations performed in the density functional theory framework we implement novel functionals accounting for Van der Waals forces and employ to the test cases of graphite and graphene layers. It turns out that this approach provides a solution to the long standing problem of overbinding between graphene layers in bulk graphite, giving the distance between the carbon layers in excellent agreement with experiment. In graphene bilayers, Van der Waals functionals lead to energetic barriers for A-B to A-A ordering of graphene bilayers that are by a factor of two smaller than the barriers obtained with standard functionals. It may be of crucial importance, particularly, if one uses atomistic ab initio methods as a starting point for multi-scale modeling of materials and for determination of effective potentials.

Keywords

Contributors

author
  • Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warszawa, Poland
author
  • Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warszawa, Poland
author
  • Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warszawa, Poland

References

  • 1. M. Dion, H. Rydberg, E. Shröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)
  • 2. K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101R (2010)
  • 3. J. Klimes, D.R. Bowler, A. Michaelides, J. Phys., Condens. Matter 22, 022201 (2010)
  • 4. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)
  • 5. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
  • 6. Y. Zhang, W. Yang, Phys. Rev. Lett. 80, 890 (1998)
  • 7. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 53 (1997)
  • 8. J.M. Soler, E. Artacho, J.D. Gale, A. Garíca, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys., Condens. Matter 14, 2745 (2002)
  • 9. J.-C. Charlier, X. Gonze, J.-P. Michenaud, Carbon 32, 289 (1994)
  • 10. M. Aoki, H. Amawashi, Solid State Commun. 142, 123 (2007)
  • 11. P.L. de Andres, R. Ramirez, J.A. Verges, Phys. Rev. B 77, 045403 (2008)
  • 12. I.V. Lebedova, A.A. Knizhnik, A.M. Popov, Y.E. Lozovik, B.V. Potapkin, Phys. Chem. Chem. Phys. 13, 5687 (2011)
  • 13. L.A. Girifalco, R.A. Lad, J. Chem. Phys. 25, 693 (1956)
  • 14. R. Zacharia, H. Ulbricht, T. Hertel, Phys. Rev. B 69, 155406 (2004)
  • 15. L.X. Benedict, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, V.H. Crespi, Chem. Phys. Lett. 286, 490 (1998)
  • 16. A.N. Kolmogorov, V.H. Crespi, Phys. Rev. Lett. 85, 4727 (2000)
  • 17. A.N. Kolmogorov, V.H. Crespi, Phys. Rev. B 71, 235415 (2005)
  • 18. O.V. Ershova, T.C. Lillestolen, E. Bichoutskaia, Phys. Chem. Chem. Phys. 12, 6483 (2010)
  • 19. S. Latil, L. Henrard, Phys. Rev. Lett. 97, 036803 (2006)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n505kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.