PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 4 | 725-731
Article title

Second Harmonic Generation in AlGaAs Nanowaveguides

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we investigate semiconductor nanowaveguides (i.e. ridge waveguides with core-widths narrower than 1 μm) intended to act as novel optical light sources through nonlinear wavelength/frequency conversion. In particular, numerical calculations have been performed in order to design suitable photonic devices (fabricated in the AlGaAs/GaAs platform) capable of high efficiency second harmonic generation. Particular interest has been dedicated to the effective conversion of optical signals from 1520-1600 nm (the third telecom window) down to 760-800 nm. We demonstrate that the output wavelength (resulting from modal phase-matching) can be dynamically tuned by proper adjustment of the temperature and/or geometrical parameters of the waveguides. In addition, by changing the waveguide width it is also possible to modify the device dispersion characteristics, giving the possibility to work in the region of anomalous dispersion and thus allowing for the generation of temporal solitons.
Keywords
Contributors
author
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL-00-662 Warsaw, Poland
  • INRS-EMT, University of Québec, 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2, Canada
author
  • INRS-EMT, University of Québec, 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2, Canada
author
  • Centre de Recherche en Nanofabrication et en Nanocaractérisation (CRN^2), Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
author
  • Centre de Recherche en Nanofabrication et en Nanocaractérisation (CRN^2), Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
author
  • Centre de Recherche en Nanofabrication et en Nanocaractérisation (CRN^2), Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
author
  • INRS-EMT, University of Québec, 1650 Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2, Canada
References
  • 1. R.W. Boyd, Nonlinear Optics, Academic Press, New York 2008
  • 2. A. Fiore, M. Photographic, E. Rosencher, R. Soria, J. Nagle, Nature 391, 463 (1998)
  • 3. H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, M. Katz, D. Eger, Acta Phys. Pol. A 103, 107 (2002)
  • 4. T.C. Kowalczyk, K.D. Singer, P.A. Cahill, Opt. Lett. 15, 2273 (1995)
  • 5. K.R. Parameswaran, R.K. Route, J.R. Kurz, R.V. Roussev, M.M. Fejer, M. Fujimura, Opt. Lett. 27, 179 (2002)
  • 6. G. Du, G. Li, S. Zhao, W. Qiao, K. Yang, J. An, M. Li, J. Wang, W. Wang, Acta Phys. Pol. A 115, 685 (2009)
  • 7. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, M. Calligaro, Appl. Phys. Lett. 84, 2974 (2004)
  • 8. S. Venugopal Rao, K. Moutzouris, M. Ebrahimzadeh, J. Opt. A, Pure Appl. Opt. 6, 569 (2004)
  • 9. X. Yu, , L. Scaccabarozzi, J.S. Harris, Jr., P.S. Kuo, M.M. Fejer, Opt. Expr. 13, 10742 (2005)
  • 10. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, IEEE J. Quant. Electr. 28, 2631 (1992)
  • 11. L. Scaccabarozzi, M.M. Fejer, Y. Huo, S. Fan, X. Yu, J.S. Harris, Opt. Lett. 31, 3626 (2006)
  • 12. C. Langrock, , S. Kumar, J.E. McGeehan, A.E. Willner, M.M. Fejer, J. Lightw. Technol. 24, 2579 (2006)
  • 13. A.M. Zheltikov, Opt. Commun. 270, 402 (2007)
  • 14. M.M. Fejer, Phys. Today 47, 25 (1994)
  • 15. A. Arie, K. Fradkin-Kashi, Y. Shreberk, Opt. Lasers Eng. 37, 159 (2002)
  • 16. P. Abolghasem, J. Han, B.J. Bijlani, A. Arjmand, A.S. Helmy, IEEE Photon. Technol. Lett. 21, 1462 (2009)
  • 17. Z. Yang, P. Chak, A.D. Bristow, H.M. van Driel, R. Iyer, J.S. Aitchison, A.L. Smirl, J.E. Sipe, Opt. Lett. 32, 826 (2007)
  • 18. P. Dong, J. Upham, A. Jugessur, A.G. Kirk, Opt. Expr. 14, 2256 (2006)
  • 19. G.A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G.I. Stegeman, D.N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C.R. Stanley, M. Sorel, Opt. Expr. 14, 9377 (2006)
  • 20. H. Ishikawa, T. Kondo, Appl. Phys. Expr. 2, 042202 (2009)
  • 21. S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigga, J. Appl. Phys. 87, 7825 (2000)
  • 22. S. Zollner, J. Appl. Phys. 90, 515 (2001)
  • 23. M. Bhashi, T. Kondo, R. Ito, S. Fukatsu, Y. Shiraki, K. Kumata, S.S. Kano, J. Appl. Phys. 74, 596 (1993)
  • 24. M. Volatier, , D. Duchesne, R. Morandotti, R. Arès, V. Aimez, Nanotechnol. 21, 134014 (2010)
  • 25. J. Meier, W.S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, J.S. Aitchison, Opt. Expr. 15, 12755 (2007)
  • 26. D. Duchesne, K.A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D.N. Christodoulides, G. Salamo, R. Ares, V. Aimez, R. Morandotti, Opt. Expr. 19, 12408 (2011)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n435kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.