Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 4 | 616-620

Article title

WO_3-Pd Structure in SAW Sensor for Hydrogen Detection

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the paper a new sensor structure for surface acoustic wave gas system is presented. A bilayer structure WO_3-Pd thin films may be useful for hydrogen detection in low concentration in air. A bilayer sensor structure of tungsten oxide WO_3 with a very thin catalytic film of palladium on the top has been studied for gas-sensing application at room temperature (about 25°C) in surface acoustic wave system. The bilayer structure of WO_3 layers with a thickness of about 50 nm, 100 nm and 150 nm was made onto a LiNbO_3 Y-cut Z-propagating substrate by means of the vacuum sublimation method using a special aluminum mask. The vapor source consisted of commercially available WO_3 powder (Fluka 99.9%) and molybdenum heater. The thin palladium (Pd) layer (about 10 nm) was made separately on each WO_3 layer by means of vapor deposition in high vacuum. There have been investigated three structures: 50 nm WO_3 + 10 nm Pd, 100 nm WO_3 + 10 nm Pd and 150 nm WO_3 + 10 nm Pd in three canal surface acoustic wave system with reference oscillator. Numerical results obtained by analysis of the surface acoustic wave gas sensor model have been compared with experimental results.

Keywords

Contributors

author
  • ENTE Sp. z o.o., Gaudiego 7, 44-100 Gliwice, Poland
author
  • Faculty of Electrical Engineering, Silesian University of Technology, B. Krzywoustego 2, 44-100 Gliwice, Poland

References

  • 1. T. Hejczyk, M. Urbańczyk, W. Jakubik, Acta Phys. Pol. A 118, 1148 (2010)
  • 2. M. Penza, G. Cassano, P. Aversa, A. Cusano, M. Consales, M. Giordano, L. Nicolais, IEEE Sensors J. 6, 867 (2006)
  • 3. M. Penza, P. Aversa, G. Cassano, W. Wlodarski, K. Kalantar-Zadeh, Sensors Actuators B 127, 168 (2007)
  • 4. W. Jakubik, M. Urbańczyk, S. Kochowski, J. Bodzenta, Sensors Actuators B 82, 265 (2002)
  • 5. W. Jakubik, M. Urbańczyk, E. Maciak, in: XX Eurosensors, Ed. P. Enokssen, University of Goeteborg, Goeteborg 2006, Vol. 1, Goeteborg, 2006, p. 124
  • 6. D. Amico, A. Palma, E. Verona, in: IEEE Ultrason. Symp., Vol. 1, 1982, p. 308
  • 7. A. Venema, E. Nieuwkoop, M.J. Vellekoop, W. Ghijsen, A. Barendsz, M.S. Nieuwenhuizen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34, 148 (1987)
  • 8. T. Pustelny, E. Maciak, Z. Opilski, M. Bednorz, Opt. Appl. 37, 187 (2007)
  • 9. W. Jakubik, Sensors Actuators B 96, 321 (2003)
  • 10. B.A. Auld, Acoustic Fields and Waves, Vol. 2, Wiley, New York 1973
  • 11. T. Hejczyk, M. Urbańczyk, W. Jakubik, Acta Phys. Pol. A 118, 1153 (2010)
  • 12. S. Gordon, A. Kino, IEEE Trans. Electron Dev. ED-18, 347 (1971)
  • 13. G. Sakai, N. Matsunaga, E. Shimanoe, N. Yamazone, Sensors Actuators B 80, 125 (2001)
  • 14. B. Pustelny, T. Pustelny, Acta Phys. Pol. A 116, 383 (2009)
  • 15. T. Pustelny, A. Opilski, B. Pustelny, Acta Phys. Pol. A 114, A183 (2003)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n411kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.