Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 3 | 501-506

Article title

High-Pressure Phase Transitions and Thermodynamic Behaviors of Cadmium Sulfide

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The pressure-induced phase transitions of cadmium sulfide semiconductor in both zinc-blende and wurtzite structures are investigated by ab initio plane-wave pseudopotential density functional theory with the local density approximation. On the basis of the fourth-order Birch-Murnaghan equation of state, the phase transition pressures P_{t} are determined by the enthalpy criterion. It is found that the phase transitions occur at pressure of 2.57 GPa (zinc blende-rocksalt structure) and 2.60 GPa (wurtzite-rocksalt structure), respectively. The equilibrium structural parameters, elastic constants, and phase transition pressures are calculated and compared with the experimental data available and other theoretical results. According to linear-response approach, the thermodynamic properties such as the free energy, enthalpy, entropy, and heat capacity are also obtained successfully from the phonon density of state.

Keywords

EN

Year

Volume

120

Issue

3

Pages

501-506

Physical description

Dates

published
2011-09
received
2010-08-02
(unknown)
2011-04-05
(unknown)
2011-05-10

Contributors

author
  • School of Science, East China Institute of Technology, Nanchang, 330013, China
  • Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics Chinese Academy of Engineering Physics, Mianyang, 621900, China
author
  • School of Science, East China Institute of Technology, Nanchang, 330013, China
author
  • Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics Chinese Academy of Engineering Physics, Mianyang, 621900, China

References

  • 1. M. Fernee, A. Watt, J. Warner, S. Cooper, N. Heckenberg, H. Rubinsztein-Dunlop, Nanotechnology 14, 991 (2003)
  • 2. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford 1997
  • 3. O. Zakharov, A. Rubio, X. Blasé, M.L. Cohen, S.G. Louie, Phys. Rev. B 50, 10780 (1994)
  • 4. Y.N. Xu, W.Y. Ching, Phys. Rev. B 48, 4335 (1993)
  • 5. M.J. Weber, Handbook of Laser Science and Technology, Vol. III CRC, Cleveland 1986
  • 6. L. Ley, R.A. Pollak, F.R. Mcfeely, S.P. Kowalczyk, D.A. Shirley, Phys. Rev. B 9, 600 (1974). As cited therein
  • 7. S. Wei, S.B. Zhang, Phys. Rev. B 62, 6944 (2000)
  • 8. A.L. Edwards, H.G. Drickamer, Phys. Rev. 122, 1149 (1961)
  • 9. G.A. Samara, H.G. Drickamer, J. Phys. Chem. Solids 23, 457 (1962)
  • 10. J.A. Corll, J. Appl. Phys. 35, 3032 (1964)
  • 11. X.S. Zhao, J. Schroeder, T.G. Bilodeau, L.G. Hwa, Phys. Rev. B 40, 1257 (1989)
  • 12. U. Venkateswaran, M. Chandrasekhar, Phys. Rev. B 31, 1219 (1985)
  • 13. M.D. Knudson, Y.M. Gupta, A.B. Kunz, Phys. Rev. B 59, 11704 (1999)
  • 14. T. Makino, K. Matsuishi, S. Onari, T. Arai, J. Phys., Condens. Matter 10, 10919 (1998)
  • 15. M. Haase, A.P. Alivisatos, J. Phys. Chem. 96, 6756 (1992)
  • 16. N. Benkhettou, D. Rached, B. Soudini, M. Driz, Phys. Status Solidi B 241, 101 (2004)
  • 17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)
  • 18. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 2100 (1980)
  • 19. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)
  • 20. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)
  • 21. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)
  • 22. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)
  • 23. M. Parrinello, A. Rahman, Phys. Rev. Lett. 45, 1196 (1980)
  • 24. M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)
  • 25. V. Milman, B. Winkler, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quantum Chem. 77, 895 (2000)
  • 26. J. Wang, S. Yip, S.R. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993)
  • 27. D.C. Wallace, Thermodynamics of Crystals, Wiley, New York 1972
  • 28. B.B. Karki, G.J. Ackland, J. Crain, J. Phys., Condens. Matter 9, 8579 (1997)
  • 29. T.H.K. Barron, M.L. Klein, Proc. Phys. Soc. 85, 523 (1965)
  • 30. W. Voigt, Lehrbuch der Kristallphysik, B.G. Teubner, Leipzig 1910 (in German)
  • 31. A.Z. Reuss, Z. Angew. Math. Mech. 9, 55 (1929)
  • 32. R. Hill, Proc. Phys. Soc. Lond. 65, 350 (1952)
  • 33. F. Birch, Phys. Rev. 71, 809 (1947)
  • 34. N.B. Owen, P.L. Smith, J.E. Martin, A.J. Wright, J. Phys. Chem. Solids 24, 1519 (1963)
  • 35. Numerical Data and Functional Relationships in Science and Technology, Eds. O. Madelung, M. Schölz, H. Weiss, Landolt-Börnstein, Vol. 17, Springer, Berlin 1982
  • 36. F. Bechstedt, W.A. Harrison, Phys. Rev. B 39, 5041 (1984)
  • 37. T. Suzuki, T. Yagi, S. Akimoto, T. Kawamura, S. Toyoda, S. Endo, J. Appl. Phys. 54, 748 (1983)
  • 38. K. Wright, J.D. Gale, Phys. Rev. B 70, 035211 (2004)
  • 39. D.I. Bolef, N.T. Melamed, M. Menes, J. Phys. Chem. Solids 17, 143 (1960)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n324kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.