Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 3 | 412-416

Article title

The Effects of Cycle Temperature and Cycle Pressure Ratios on the Performance of an Irreversible Otto Cycle

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper reports the thermodynamic optimization based on the maximum mean effective pressure, maximum power and maximum thermal efficiency criteria for an irreversible Otto heat engine model which includes internal irreversibility resulting from the adiabatic processes. The mean effective pressure, power output, and thermal efficiency are obtained by introducing the compression ratio, cycle temperature ratio, specific heat ratio and the compression and expansion efficiencies. Optimal performance and design parameters of the Otto cycle are obtained analytically for the maximum power and maximum thermal efficiency conditions and numerically for the maximum mean effective pressure conditions. The results at maximum mean effective pressure conditions are compared with those results obtained by using the maximum power and maximum thermal efficiency criteria. The effects of the cycle temperature ratio and cycle pressure ratio on the general and optimal performances are investigated.

Keywords

EN

Contributors

author
  • Department of Naval Architecture and Marine Engineering, Yildiz Technical University, Besiktas, 34349, Istanbul, Turkey
author
  • Department of Naval Architecture and Marine Engineering, Yildiz Technical University, Besiktas, 34349, Istanbul, Turkey
author
  • Department of Marine Engineering Operations, Yildiz Technical University, Besiktas, 34349, Istanbul, Turkey

References

  • 1. A. Bejan, J. Appl. Phys. 79, 1191 (1996)
  • 2. L. Chen, C. Wu, F. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)
  • 3. L. Chen, F. Sun, Advances in Finite-Time Thermodynamics: Analysis and Optimization, Nova Sci. Pub., New York 2004
  • 4. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)
  • 5. B. Andresen, P. Salamon, R.S. Berry, Phys. Today 37, 62 (1984)
  • 6. S. Sieniutycz, P. Salamon, Advances in Thermodynamics: Finite-Time Thermodynamics and Thermoeconomics, Taylor and Francis, New York 1990
  • 7. A. Durmayaz, O.S. Sogut, B. Sahin, H. Yavuz, Prog. Ener. Comb. Sci. 30, 175 (2004)
  • 8. M. Mozurkewich, R.S. Berry, J. Appl. Phys. 53, 34 (1982)
  • 9. S.A. Klein, Trans. ASME J. Eng. Gas Turbine Pow. 113, 511 (1991)
  • 10. C. Wu, D.A. Blank, J. Inst. Energy 65, 86 (1992)
  • 11. C. Wu, D.A. Blank, Energy Convers. Manag. 34, 1255 (1993)
  • 12. A.C. Hernandez, A. Medina, J.M.M. Roco, S. Velasco, Eur. J. Phys. 16, 73 (1995)
  • 13. F. Angulo-Brown, J.A. Rocha-Martinez, T.D. Navarrete-Gonzalez, J. Phys. D, Appl. Phys. 29, 80 (1996)
  • 14. L. Chen, F. Sun, C. Wu, Energy Convers. Manag. 39, 643 (1998)
  • 15. Y. Ge, L. Chen, F. Sun, C. Wu, Int. J. Therm. Sci. 44, 506 (2005)
  • 16. Y. Ge, L. Chen, F. Sun, C. Wu, Int. J. Exergy 2, 274 (2005)
  • 17. O.A. Ozsoysal, Energy Convers. Manag. 47, 1051 (2006)
  • 18. J. Chen, Y. Zhao, J. He, Appl. Energy 83, 228 (2006)
  • 19. S.S. Hou, Energy Convers. Manag. 48, 1683 (2007)
  • 20. Y. Ge, L. Chen, F. Sun, C. Wu, Appl. Energy 85, 618 (2008)
  • 21. J.C. Lin, S.S. Hou, Energy Convers. Manag. 49, 1218 (2008)
  • 22. M. Gumus, M. Atmaca, T. Yilmaz, Int. J. Energy Res. 33, 745 (2009)
  • 23. R. Ebrahimi, Acta Phys. Pol. A 117, 887 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n309kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.