PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 3 | 397-406
Article title

Performance Prediction and Irreversibility Analysis of a Thermoelectric Refrigerator with Finned Heat Exchanger

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
A developed model of commercial thermoelectric refrigerators with finned heat exchanger is established by introducing finite time thermodynamics. A significant novelty is that physical properties, dimension parameters, temperature parameters and flow parameters are all taken into account in the model. Numerical studies and comparative investigation on the performance of a typical commercial water-cooling thermoelectric refrigerator which consists of 127 thermoelectric elements, are performed for cooling load and coefficient of performance. The results show that the maximum cooling load is 2.33 W and the maximum coefficient of performance is 0.54 when the cooling temperature difference is 10 K. Comparing the simulation results of several models, it is found that the heat convection of the heat exchanger and the heat leakage through the air gap are the main factors, which cause irreversibility and decrease the performance. Moreover, the performance can be improved by optimizing the length and cross-section area of thermoelectric elements. The model and calculation method may be applied to not only the analysis and performance prediction of practical thermoelectric refrigerators, but also the design and optimization of heat exchangers.
Keywords
EN
Year
Volume
120
Issue
3
Pages
397-406
Physical description
Dates
published
2011-09
received
2010-12-18
(unknown)
2011-04-01
References
  • 1. A.F. Ioffe, Semiconductor, Thermoelements and Thermoelectric Cooling, Infosearch, London 1957
  • 2. D.M. Rowe, CRC Handbook of Thermoelectrics, 1st ed., CRC Press, Boca Raton 1995
  • 3. S.B. Riffat, X. Ma, Appl. Thermal Eng. 23, 913 (2003)
  • 4. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554 (2008)
  • 5. L.E. Bell, Science 321, 1457 (2008)
  • 6. K. Atik, Thermoeconomic Optimization in the Design of Thermoelectric Cooler, Karabuk, Turkiye 2009
  • 7. S.W. Angrist, Direct Energy Conversion, 4th ed., Allyn and Bacon, Boston 1992
  • 8. V. Radcenco, Generalized Thermodynamics, Editura Techica, Bucharest 1994
  • 9. A. Bejan, Advanced Engineering Thermodynamics, 3rd ed., Wiley, Hoboken, N.J. 2006
  • 10. F.L. Tan, S.C. Fok, Energy Convers. Manag. 49, 1715 (2008)
  • 11. M. Yamanashi, J. Appl. Phys. 80, 5494 (1996)
  • 12. J. Chen, Z. Yan, L. Wu, Energy, The Int. J. 22, 979 (1997)
  • 13. B.J. Huang, C.J. Chin, C.L. Duang, Int. J. Refriger. 23, 208 (2000)
  • 14. X.C. Xuan, Energy Convers. Manag. 44, 399 (2003)
  • 15. A. Bejan, Entropy Generation through Heat and Fluid Flow, Wiley, New York 1982
  • 16. B. Andresen, Finite-Time Thermodynamics: Physics Laboratory II, University of Copenhagen, Copenhagen 1983
  • 17. M. Feidt, Thermodynamique et Optimisation Energetique des Systems et Procedes, 2nd ed., Technique et Documentation, Lavoisier, Paris 1996
  • 18. J.M. Gordon, K.C. Ng, Cool Thermodynamics, Cambridge Int. Science Publishers, Cambridge 2000
  • 19. A.M. Tsirlin, Irreversible, Estimates of Limiting Possibilities of Thermodynamic and Microeconomic Systems, Nauka, Moscow 2003
  • 20. D.C. Agrawal, Eur. J. Phys. 30, 1173 (2009)
  • 21. D.C. Agrawal, Eur. J. Phys. 30, 587 (2009)
  • 22. D.C.M.V. Agrawal, Eur. J. Phys. 30, 295 (2009)
  • 23. M. Feidt, Entropy 11, 529 (2009)
  • 24. S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems, Elsevier, Oxford 2009
  • 25. R. Ebrahimi, Acta Phys. Pol. A 117, 887 (2010)
  • 26. R. Ebrahimi, J. Am. Sci. 6, 113 (2010)
  • 27. B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)
  • 28. R. Ebrahimi, Math. Comp. Model 53, 1289 (2011)
  • 29. R. Ebrahimi, J. Energy Institute 84, 30 (2011)
  • 30. G.J. Vella, L.B. Harris, H.J. Goldsmid, Solar Energy 18, 355 (1976)
  • 31. S. Goktun, Energy Convers. Manag. 36, 1197 (1995)
  • 32. X.C. Xuan, K.C. Ng, C. Yap, H.T. Chua, Int. J. Heat Mass Tranfer 45, 5159 (2002)
  • 33. M. Huang, R. Yen, A. Wang, Int. J. Heat Mass Tranfer 48, 413 (2005)
  • 34. X.C. Xuan, Semicond. Sci. Tech. 17, 114 (2002)
  • 35. S.B. Riffat, G. Qiu, Appl. Thermal Eng. 24, 1979 (2004)
  • 36. J. Luo, L. Chen, F. Sun, C. Wu, Energy Convers. Manag. 44, 3197 (2003)
  • 37. L. Chen, J. Li, F. Sun, C. Wu, J. Appl. Phys. 98, 34507 (2005)
  • 38. Y. Cheng, W. Lin, Appl. Thermal Eng. 25, 2983 (2005)
  • 39. Y.G. Gurevich, I. Lashkevych, Int. J. Thermal Sci. 48, 2080 (2009)
  • 40. I. Lashkevych, C. Cortes, Y.G. Gurevich, J. Appl. Phys. 105, 53705 (2009)
  • 41. X. Chen, B. Lin, J. Chen, Appl. Energy 83, 681 (2006)
  • 42. N.M. Khattab, E.T.E. Shenawy, Energy Convers. Manag. 47, 407 (2006)
  • 43. L. Chen, F. Meng, F. Sun, J. Power Energy 223, 329 (2009)
  • 44. L. Chen, F. Meng, F. Sun, Rev. Mex. Fis. 55, 282 (2009)
  • 45. F. Meng, L. Chen, F. Sun, J. Energy Inst. 83, 108 (2010)
  • 46. F. Meng, L. Chen, F. Sun, Math. Comp. Model. 52, 586 (2010)
  • 47. F. Meng, L. Chen, F. Sun, Indian J. Pure Appl. Phys. 48, 731 (2010)
  • 48. J.G. Vian, D. Astrain, Appl. Thermal Eng. 29, 3319 (2009)
  • 49. J.G. Vian, D. Astrain, Appl. Thermal Eng. 29, 1935 (2009)
  • 50. F. Incropera, D.D. Witt, Fundamentals, of Heat and Mass Transfer, 6th ed., Wiley, New York 2007
  • 51. D.M. Rowe, G. Min, J. Power Sources 73, 193 (1998)
  • 52. Melcor, Thermoelectric Handbook, Available from: http://www.Laridtech.com , 2010
  • 53. Ferrotec, http://www.Ferrotec.com.cn , 2010
  • 54. A. Bejan, Convection Heat Transfer, 3th ed., Wiley, New York 2004
  • 55. Y.A. Cengel, Heat Transfer - A Practical Approach, McGraw-Hill, New York 1998
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n307kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.