Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 3 | 384-389

Article title

Effects of Equivalence Ratio and Mean Piston Speed on Performance of an Irreversible Dual Cycle

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present study, the performance of an air standard dual cycle is analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio, between the power output and the thermal efficiency are derived by detailed numerical examples. The results show that the maximum power output and the power output at the maximum efficiency point increase and then decrease as the equivalence ratio and/or the mean piston speed increases. The results also show that the optimal compression ratio corresponding to maximum power output point and the working range of the cycle remain constant as the mean engine speed is increased, but they increase and then decrease as the equivalence ratio is increased. It is noteworthy that the results obtained in the present study are of significance for providing guidance with respect to the performance evaluation of practical internal combustion engines.

Keywords

EN

Contributors

author
  • Department of Agriculture Machine Mechanics, Shahrekord University, P.O. Box 115, Shahrekord, Iran

References

  • 1. G. Aragon-Gonzalez, A. Ganales-Palma, A. Leon-Galicia, J. Phys. D, Appl. Phys. 33, 1403 (2000)
  • 2. G. Aragon-Gonzalez, A. Canales-Palma, A. Leon-Galicia, J.R. Morales-Gomez, Rev. Mexic. Fis. 52, 309 (2006)
  • 3. R. Ebrahimi, Math. Comp. Model. 53, 1289 (2011)
  • 4. P.L. Curto-Risso, A. Medina, A. Calvo Hernadez, J. Appl. Phys. 104, 094911 (2008)
  • 5. R. Ebrahimi, Acta Phys. Pol. A 117, 887 (2010)
  • 6. P.L. Curto-Risso, A. Medina, A. Calvo Hernadez J. Appl. Phys. 105, 094904 (2009)
  • 7. D.A. Blank, C. Wu, Int. J. Power Energy Syst. 14, 98 (1994)
  • 8. J. Lin, L. Chen, C. Wu, F. Sun, Int. J. Energy Res. 23, 765 (1999)
  • 9. B. Sahin, O.A. Ozsoysal, O.S. Sogut, Energy Int. J. 2, 173 (2002)
  • 10. W. Wang, L. Chen, F. Sun, C. Wu, Exergy Int. J. 2, 340 (2002)
  • 11. B. Sahin, U. Kesgin, A. Kodal, N. Vardar, Energy Convers. Manag. 43, 2019 (2002)
  • 12. A. Parlak, B. Sahin, H. Yasar, Energy Convers. Manag. 45, 1219 (2004)
  • 13. A. Parlak, Energy Convers. Manag. 46, 351 (2005)
  • 14. S.S. Hou, Energy Convers. Manag. 45, 3003 (2004)
  • 15. Y. Ust, B. Sahin, O.S. Sogut, Appl. Energy 82, 23 (2005)
  • 16. L. Chen, Y. Ge, F. Sun, C. Wu, Energy Convers. Manag. 47, 3224 (2006)
  • 17. A. Ghatak, S. Chakraborty, J. Mech. Energy 58, 1 (2007)
  • 18. Y. Zhao, J. Chen, Int. J. Thermal Sci. 46, 605 (2007)
  • 19. Y. Ge, L. Chen, F. Sun, Appl Energy 85, 618 (2008)
  • 20. J. Chen, Y. Zhao, J. He, Appl. Energy 83, 228 (2006)
  • 21. R. Ebrahimi, J. Am. Sci. 5, 83 (2009)
  • 22. G.H. Abd Alla, Energy Convers. Manag. 43, 1043 (2002)
  • 23. J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw Hill, New York 1988
  • 24. Y. Ge, L. Chen, F. Sun, Math. Comp. Model. 50, 101 (2009)
  • 25. R. Ebrahimi, J. Energy Instit. 84, 38 (2011)
  • 26. Y. Zhao, J. Chen, Appl. Therm. Eng. 27, 2051 (2007)
  • 27. Y. Zhao, J. Chen, Energy Convers. Manag. 48, 2595 (2007)
  • 28. R. Ebrahimi, Acta Phys. Pol. A 118, 534 (2010)
  • 29. Y. Ge, L. Chen, F. Sun, C. Wu, Int. J. Therm. Sci. 44, 506 (2005)
  • 30. L. Chen, J. Lin, J. Lou, F. Sun, C. Wu, Int. J. Energy Res. 26, 965 (2002)
  • 31. M. Mercier, Ph.D. thesis, Université de Valenciennes et du Hainaut Cambrésis, France 2006 (in French)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n305kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.