EN
The performance of an isothermal endoreversible four-reservoir chemical potential transformer, in which the mass transfer between the mass reservoir and the working medium obeys diffusive law, is analyzed and optimized in this paper. The relation between the rate of energy pumping and the coefficient of performance of the isothermal chemical potential transformer is derived by using finite-time thermodynamics. Moreover, the optimal operating regions and the influences of some parameters on the performance of the cycle are studied. The results obtained herein can provide some new theoretical guidelines for the optimal design of a class of apparatus such as mass exchangers, as well as electrochemical, photochemical, and solid-state devices, and the fuel pumps for solar-energy conversion systems.