PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 2 | 266-271
Article title

Network Theory of Living Cell Clusters and Rheological Applications at Nano-Level

Content
Title variants
Languages of publication
EN
Abstracts
EN
The system of living cells closed in a polymer matrix and self-organized into clusters is considered, extending free volume concept developed for complex system interactions quantification in statistical mechanics of jammed state of matter. Possibility of extension of Edwards concept of compactivity and angorisity developed for hard irregular grains with friction to living cell systems, is considered. Existences of scaling laws for cell colony grow, related to their self assembling and response to polymer hydrogel micro-environment constrains, is analyzed as function of rate of cluster density increase. Based on the theory proposed are developed relations, connecting cluster properties that are difficult to measure, to data from standard cell cultivation experiments. The model also provides possibilities of incorporation data on single cell behavior, available from modern nano- rheology measurements, into cluster
Keywords
Contributors
author
  • Faculty of Technology and Metallurgy, Belgrade University, Belgrade, Serbia
  • Faculty of Technology and Metallurgy, Belgrade University, Belgrade, Serbia
author
  • Faculty of Technology and Metallurgy, Belgrade University, Belgrade, Serbia
author
  • Faculty of Technology and Metallurgy, Belgrade University, Belgrade, Serbia
References
  • 1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.P. Watson, Molecular Biology of the Cell , Garland, New York 2004
  • 2. S. Monte, F. Ovidio, S. Dane, P. Sorensen, PNAS 104,18 377 (2007)
  • 3. A.F. Taylor, M.R. Tinsly, F. Wang, Z. Huang, K.Schwalter, Science 323, 614 (2009)
  • 4. D. Rakovic, Integrative Biophysics Quantum Medicine, Quantum Holographic Informatics, IASC-IEFPP, Belgrade 2009
  • 5. G.T. Gregor, K. Fujimoto, N. Mosoki, S. Sawai, Science, 328, 1021(2010)
  • 6. P.G. deGennes, Rev. Mod. Phys. 71, S374(1999)
  • 7. S.F. Edwards, J. Stat. Physics 116, 29 (2004)
  • 8. M.B. Plavsic, I. Pajic-Lijakovic, M.M. Plavsic, Int. J. Modern Phys. 24, 813(2009)
  • 9. P.J. Flory, Principles of Polymer Science (Cornel Univ. Press., New York 1971)
  • 10. H.A. Makse, J. Kuchan, Nature 415, 614 (2002)
  • 11. R.C. Ball, R. Blumenfeld, Phys. Rev. Lett. 88, 115505 (2002)
  • 12. R. Blumenfeld, S.F. Edwards, J.Phys. Chem.B, 113, 3981 (2009)
  • 13. S. Henkes, C.S. O'Hern, B. Chakraborty, Phys. Rev. Lett. 99, 038002 (2007)
  • 14. C. Song, P. Wang, H. Makse, Nature 453, 629 (2008)
  • 15. S.F. Edwards, Phys. A 353, 114 (2005)
  • 16. S.F. Edwards, J. Phys. A: Math. Theor. 41, 3240 (2008)
  • 17. J. Brujic, P. Wang, C. Song, D. Johnson, O. Sindt, H. Makse, Phys. Rev. Lett. 95, 128001(2005)
  • 18. E. Nowak, J. Knight, E. Ben-Naim, H. Jaeger, S. Nagel, Phys. Rev. E 57, 1971 (1998)
  • 19. J. Bray, A. Prados, Phys. Rev. E 68 ,051302 (2003)
  • 20. G.I. Bell, Science, 200, 618 (1978)
  • 21. E.A. Evans, D.A. Chalderwood, Science, 316, 1148 (2007)
  • 22. D. Riveline, E. Zamairn, N. Balaban, U. Schwarz, T. Ishizaki, J. Cell Biology 153, 1175 (2001)
  • 23. N.Q. Balaban, U. Schwarz, D. Riveline, P. Goichberg, G. Tzur, Nature Cell Biology 3, 466 (2001)
  • 24. I. Pajic-Lijakovic, M. Plavsic, V. Nedovic, B. Bugarski, J.Microencap. 24, 420 (2007)
  • 25. I. Pajic-Lijakovic, D. Bugarski, M. Plavsic, B. Bugarski, Process Biochemistry 42,167 (2007)
  • 26. I. Pajic-Lijakovic, M. Plavsic, B. Bugarski, V. Nedovic, J. Biotech. 129, 446 (2007)
  • 27. I. Pajic-Lijakovic, M. Plavsic, V. Nedovic, B. Bugarski, Minerva Bioteh. 20, 99 (2008)
  • 28. I. Pajic-Lijakovic, B. Bugarski, V. Nedovic, M. Plavsic, Minerva Bioteh. 17, 245 (2005)
  • 29. I. Pajic-Lijakovic, V. Ilic, B. Bugarski, M. Plavsic, Europ. Biophys. J. 39, 789 (2010)
  • 30. M.B. Plavsic, I. Pajic-Lijakovic, N. Lazic, B. Bugarski, P. Putanov, Materials Manufac. Proc. 24, 1190 (2009)
  • 31. M.B. Plavsic, I. Pajic-Lijakovic, P. Putanov, Ch. 19, Chain Conformational Statistics, Mechanical Properties of Elastomer Blends in: New polymer materials, Eds. L. Korugic-Karaz, W. Mac Knight, E. Martuscelli, ACS edition, Oxford Univ. Press, Oxford 2005
  • 32. M.B. Plavsic, I. Pajic-Lijakovic, B. Bugarski, J. Budinski-Simendic, V. Nedovic, P. Putanov, Ch. 14, Pseudo-Blend Model of Hydrogel Immobilized Living Cells in: Contemporary Science of Polymeric Materials, Ed. L. Korugic-Karasz, ACS Books edition, Washington 2010
  • 33. J.P. Hsu, A. Spasic, Interfacial Electroviscoelasticity, Electrophoresis, CRC Press, New York 2010
  • 34. G. Chang, J. Tse, R.K. Jain, L.L. Munn, PloS ONE 4 e4632 (2009)
  • 35. J. Guck, F. Lautenschlager, S. Pasche, M. Beil, Int. Biol., pub. on line 27 Sep. 2010, http://pubs.rsc.org|doi:10.1039/COIB00050G
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n213kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.