PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 2 | 252-255
Article title

Characterization of New Structure for Silicon Carbide X-Ray Detector by Method Monte Carlo

Content
Title variants
Languages of publication
EN
Abstracts
EN
This work presents a characterization of radiation absorption properties of silicon carbide (SiC) as semiconductor for the realization of detectors for X-rays. SiC detectors can potentially reach superior performance with respect to all the other semiconductors presently employed in hazardous environments in nuclear and space science and technology. Physics and numerical modeling of photons transport through SiC detector is incorporated in non-destructive Monte Carlo method for determining the energy deposited and dose distribution. The Monte Carlo code has been adopted for numerical simulations for different detector conditions and configurations. The X-ray characterization of new SiC structures originates the improving of design of these detector systems.
Keywords
Contributors
author
  • Vinča Institute of Nuclear Sciences, Belgrade, Serbia
author
  • Vinča Institute of Nuclear Sciences, Belgrade, Serbia
author
  • Institute for testing materials-IMS, Belgrade, Serbia
  • Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia
author
  • Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
References
  • 1. J.E. Lees, D.J. Bassford, E.J. Bunce, M.R. Sims, A.B. Horsfall, Nucl. Instr. Meth. Phys. Res. A 604, 174 (2009)
  • 2. J.E. Lees, D.J. Bassford, G.W. Fraser, A.B. Horsfall, K.V. Vassileski, N.G. Wright, A. Owens, Nucl. Instr. Meth. Phys. Res. A 578, 226 (2007)
  • 3. J.E. Lees, Nucl. Instr. Meth. Phys. Res. A 613, 98 (2010)
  • 4. R.D. Ilic, FOTELP-2K10, http://www.vinca.rs/%7Erasa/doc/FOTPEN10.PDF
  • 5. G.F. Knoll, Radiation Detection and Measurement, 3rd ed., John Wiley and Sons, Inc., ISBN: 0-471-07338-5, 2000
  • 6. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd ed., Springer-Verlag, ISBN: 0-387-17386-2, 1994
  • 7. B.G. Lowe, R.A. Sareen, Nucl. Instr. Methods A 576, 367 (2007)
  • 8. M.V.S. Chandrashekhar, C.I. Thomas, M.G. Spencer, Appl. Phys. Lett. 89 (2006), doi:10.1063/1.2243799
  • 9. M.N. Mazziotta, Nucl. Instr. Meth. Phys. Res. A 584, 436 (2008)
  • 10. R. Talwar, A.K. Chatterjee, J. Elec. Dev. 6, 194 (2008)
  • 11. R.D. Ilic, FOTELP-2K6, Photons, Electrons and Positrons Transport in 3D by Monte Carlo Techniques, IAEA-1388, http://www.nea.fr/tools/abstract/detail/iaea1388
  • 12. S.J. Stankovic, R.D. Ilic, P. Osmokrovic, B. Loncar, A. Vasic, IEEE Trans. Plasma Sc. 34, 1715 (2006)
  • 13. S.J. Stankovic, R.D. Ilic, M. Petrovic, B. Loncar, A. Vasic, Mater. Sc. Forum 518, 361 (2006)
  • 14. S.J. Stankovic, M. Petrovic, M. Kovacevic, A. Vasic, P. Osmokrovic, B. Loncar, Mater. Sc. Forum 555, 141 (2007)
  • 15. S.J. Stankovic, R.D. Ilic, D.M. Davidovic, M. Petrovic, Acta Phys. Pol. A 115, 816 (2009)
  • 16. XCOM: Photon Cross Sections Database, NBSIR 87-3597, (1999), http://www.nist.gov/physlab/data/xcom/index.cfm
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n210kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.