Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 1 | 192-195
Article title

Influence of Hot Implantation on Residual Radiation Damage in Silicon Carbide

Title variants
Languages of publication
Remarkable thermomechanical and electrical properties of silicon carbide (SiC) make this material very attractive for high-temperature, high-power, and high-frequency applications. Because of very low values of diffusion coefficient of most impurities in SiC, ion implantation is the best method to selectively introduce dopants over well-defined depths in SiC. Aluminium is commonly used for creating p-type regions in SiC. However, post-implantation radiation damage, which strongly deteriorates required electric properties of the implanted layers, is difficult to anneal even at high temperatures because of remaining residual damage. Therefore implantation at elevated target temperatures (hot implantation) is nowadays an accepted method to decrease the level of the residual radiation damage by avoiding ion beam-induced amorphization. The main objective of this study is to compare the results of the Rutherford backscattering spectroscopy with channeling and micro-Raman spectroscopy investigations of room temperature and 500°C Al^{+} ion implantation-induced damage in 6H-SiC and its removal by high temperature (up to 1600°C) thermal annealing.
Physical description
  • 1. H.H. Zhang, C.H. Zhang, B.S. Li, L.H. Han, Y. Zhang, Nucl. Instrum. Methods Phys. Res. B 268, 2318 (2010)
  • 2. K. Kawahara, G. Alfieri, T. Kimoto, J. Appl. Phys. 106, 013719 (2009)
  • 3. A. Poggi, F. Moscatelli, S. Solmi, A. Armigliato, L. Belsito, R. Nipoti, J. Appl. Phys. 107, 044506 (2010)
  • 4. M. Gurfinkel, S. Potbhare, H.D. Xiong, J.S. Suehle, Y. Shapira, A.J. Lelis, D. Habersat, N. Goldsman, J. Appl. Phys. 105, 084511 (2009)
  • 5. I. Pintilie, C.M. Teodorescu, F. Moscatelli, R. Nipoti, A. Poggi, S. Solmi, L.S. Løvlie, B.G. Svensson, J. Appl. Phys. 108, 024503 (2010)
  • 6. V. Heera, D. Panknin, W. Skorupa, Appl. Surf. Sci. 184, 307 (2001)
  • 7. M. Turek, S. Prucnal, A. Drozdziel, K. Pyszniak, Rev. Sci. Instrum. 80, 043304 (2009)
  • 8. M. Turek, A. Drozdziel, K. Pyszniak, S. Prucnal, J. Żuk, Przegląd Elektrotechniczny 86, 193 (2010)
  • 9. M. Turek, S. Prucnal, A. Drozdziel, K. Pyszniak, Nucl. Instrum. Methods Phys. Res. B 269, 700 (2011)
  • 10. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, The Stopping and Range of Ions in Matter, Lulu Press Co., Morrisville, NC, USA 2009
  • 11. J. Romanek, D. Grambole, F. Herrmann, M. Voelskov, M. Posselt, W. Skorupa, J. Zuk, Nucl. Instrum. Methods Phys. Res. B 251, 148 (2006)
  • 12. D.W. Feldman, J.H. Parker Jr., W.J. Choyke, L. Patrick, Phys. Rev. 170, 698 (1968)
  • 13. W. Bolse, J. Conrad, T. Roedle, T. Weber, Surf. Coat. Technol. 74-75, 927 (1995)
  • 14. S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thome, J.-J. Grob, J. Phys., Condens. Matter 18, 5235 (2006)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.