Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 1 | 30-34
Article title

Solar Cell Emitters Fabricated by Flash Lamp Millisecond Annealing

Title variants
Languages of publication
Phosphorus ion implantation was used for the emitter formation in mono- and multicrystalline silicon solar cells. After ion implantation the silicon is strongly disordered or amorphous within the ion range. Therefore subsequent annealing is required to remove the implantation damage and activate the doping element. Flash-lamp annealing offers here an alternative route for the emitter formation at overall low thermal budget. During flash-lamp annealing, only the wafer surface is heated homogeneously to very high temperatures at ms time scales, resulting in annealing of the implantation damage and electrical activation of phosphorus. However, variation of the pulse time also allows to modify the degree of annealing of the bulk region to some extent as well, which can have an influence on the gettering behaviour of metallic bulk impurities. The μ-Raman spectroscopy showed that the silicon surface is amorphous after ion implantation. It could be demonstrated that flash-lamp annealing at 800°C for 20 ms even without preheating is sufficient to recrystallize implanted silicon. The highest carrier concentration and efficiency as well as the lowest resistivity were obtained after annealing at 1200°C for 20 ms both for mono- and multicrystalline silicon wafers. Photoluminescence results point towards P-cluster formation at high annealing temperatures which affects metal impurity gettering within the emitter.
Physical description
  • 1. K. Ohdaira, T. Fujiwara, Y. Endo, K. Shiba, H. Takemoto, H. Matsumura, Jpn. J. Appl. Phys. 49, 04DP04 (2010)
  • 2. H. Watanabe, H. Miki, S. Sugai, K. Kawasaki, T. Kioka, Jpn. J. Appl. Phys. 33, 4491 (1994)
  • 3. A. Suboundji, T. Mohammed-Brahim, G. Andrä, J. Bergmann, F. Falk, J. Non-Cryst. Solids 338-340, 758 (2004)
  • 4. N.K. Mudugamuwa, A. Adikaari, D. Dissanayake, V. Stolojan, S. Silva, Sol. Energy Mater. Sol. Cell 92, 178 (2008)
  • 5. K. Sopian, N. Amin, N. Asim, S.H. Zaidi, Europ. J. Sci. Res. 24, 365 (2008)
  • 6. T. Kim, G. Kim, Y. Yoon, C. Kim, B. Lee, S. Yoo, Jpn. J. Appl. Phys. Part 1 39, 5775 (2000)
  • 7. F. Terai, S. Matunaka, A. Tauchi, Ch. Ichimura, T. Nagatomo, T. Homma, J. Electrochem. Soc. 153, H147 (2006)
  • 8. Ch.H. Poon, A. See, Y. Tan, M. Zhou, D. Gui, J. Electrochem. Soc. 155, H59 (2008)
  • 9. W. Anwand, S.Z. Xiong, C.Y. Wu, T. Gebel, Th. Schumann, G. Brauer, W. Skorupa, Acta Phys. Pol. A 113, 1273 (2008)
  • 10. J.E. Smith Jr, M.H. Brodsky, B.L. Crowder, M.I. Nathan, A. Pinchuk, Phys. Rev. Lett. 26, 642 (1971)
  • 11. Springer Handbook of Condensed Matter and Materials Data, Eds. W. Martienssen, H. Warlimont, Springer, Berlin 2005
  • 12. J. Jin, Z. Yuan, L. Huang, S. Chen, W. Shi, Z. Cao, Q. Lou, Appl. Surf. Sci. 256, 3453 (2010)
  • 13. E. Bonera, M. Fanciulli, M. Mariani, Appl. Phys. Lett. 87, 111913 (2005)
  • 14. P. Lengsfeld, N.H. Nickel, Ch. Genzel, W. Fuths, J. Appl. Phys. 91, 9128 (2002)
  • 15. C. Georgi, M. Hecker, E. Zschech, J. Appl. Phys. 101, 123104 (2007)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.