Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 6A | 936-941
Article title

Analytical Determination of the PZTs Distribution in Active Beam Vibration Protection Problem

Title variants
Languages of publication
The paper concerns an active vibration protection (p-reduction) of the structure via piezoelectric transducers; p-reduction corresponds to an active vibration reduction (a-reduction). The quantity and effectiveness of the (a- or p-) reduction, among other parameters, depend on the piezoelectric transducers distribution on the structure. The best results are obtained bonding piezoelectric transducers to the structure in the sub-domains with the largest curvatures; it is so-called quasi-optimal distribution of the piezoelectric transducers. Up to now, the quasi-optimal distribution was determined based on heuristic reasons only. The aim of the paper is to confirm quasi-optimal distribution in analytical way. The beam clamped at one end, vibrating with first three modes separately, is chosen as the research object. It is assumed that the piezoelectric transducers are exactly the same. Demanding the vibration amplitude to be equal to zero (i.e. p-reduction condition), the general formula for interacting forces piezoelectric transducers-beam is derived. Next, such an appropriate distribution of piezoelectric transducers is searched analytically, that the minimal forces are achieved; it leads to the best reduction effectiveness. It turned out that the analytical method pointed out quasi-optimal distribution of the piezoelectric transducers. The validation of theoretical considerations is confirmed numerically.
Physical description
  • 1. C.R. Fuller, S.J. Elliot, P.A. Nielsen, Active Control of Vibration, Academic Press, London 1997
  • 2. C.H. Hansen, S.D. Snyder, Active Control of Noise and Vibration, E&FN SPON, London 1997
  • 3. A. Brański, M. Borkowski, S. Szela, in: Proc. XVI Conf. on Acoustic and Biomedical Engineering (IAB), Kraków-Zakopane (Poland) 2009, Eds. Z. Damijan, J. Wiciak, Katedra Mechaniki i Wibroakustyki AGH, Kraków 2009, p. 82
  • 4. M.S. Kozień, J. Wiciak, in: Proc. Conf. Structural Acoustic - Waves - Biomedical Engineering, Eds. Z. Damijan, M. Iwaniec, J. Wiciak, Polish Acoustical Society, Kraków 2003, p. 47
  • 5. M. Pietrzakowski, Monograph 204, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2004
  • 6. P.M. Przybyłowicz, Monograph 197, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2002
  • 7. J. Wiciak, Monograph 175, Akademia Górniczo-Hutnicza, Kraków 2008
  • 8. J. Wiciak, Mol. Quant. Acoust. 25, 281 (2004)
  • 9. Z. Gosiewski, A. Koszewnik, in: Proc. 8th Conf. Active Noise Vibration Control Method, Kraków, Ed. J. Kowal, 2007, Department of Process Control AGH, Kraków 2007, p. 69
  • 10. M.S. Kozień, J. Wiciak, in: Proc. OSA'03, Eds. R. Bukowski, T. Pustelny, Gliwice 2003, p. 245 (in Polish)
  • 11. J. Wiciak, Acoust. Eng. 13, 145 (2004) (in Polish)
  • 12. M. Kozień, J. Wiciak, Mol. Quant. Acoust. 24, 97 (2003)
  • 13. M. Kozień, Monograph 331, Politechnika Krakowska, Kraków 2006 (in Polish)
  • 14. I. Bruant, L. Gallimard, S. Nikoukar, J. Sound Vib. 329, 1615 (2010)
  • 15. A. Brański, S. Szela, Arch. Control Sci. 17, 427 (2007)
  • 16. A. Brański, S. Szela, Arch. Acoust. 33, 413 (2008)
  • 17. A. Brański, S. Szela, in: Proc. 9th Conf. on Active Noise and Vibration Control Method (MARDiF), Kraków-Zakopane (Poland), Ed. J. Kowal, Department of Process Control AGH, Kraków 2009, p. 259
  • 18. S. Kaliski, Vibration and Waves, PWN, Warszawa 1986 (in Polish)
  • 19. E. Kącki, Partial Differential Equations, WNT, Warszawa 1992 (in Polish)
  • 20. S. Ziemba, Vibration Analysis, Vol. II, PWN, Warszawa 1959 (in Polish)
  • 21. G.M. Fichtenholtz, Differential and Integral Calculus, PWN, Warszawa 1999 (in Polish)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.