PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 6 | 895-900
Article title

Phonon Dispersion Analysis as an Indispensable Tool for Predictions of Solid State Polymorphism and Dynamic Metastability: Case of Compressed Silane

Content
Title variants
Languages of publication
EN
Abstracts
EN
Diamond anvil cell experiments suggest that upon compression above 26.5 GPa silane (SiH_4) forms a polymeric phase VI, whose crystal structure has not yet been solved. Here we present DFT calculations showing how phonon-guided optimization leads to a polymeric Fdd2 structure which is the lowest-enthalpy polymorph of SiH_4 above 26.8 GPa, and which most probably can be identified as the experimentally observed polymeric phase. The new algorithm of predicting the lowest-energy structures enables simultaneous inspection of the potential energy surface of a given system, calculation of its vibrational properties, and assessment of chances for obtaining a metastable ambient-pressure structure via decompression. Our calculations indicate that at room temperature the differences in the vibrational and entropy terms contributing to the Gibbs free energy of different polymorphs of silane are negligible in comparison with corresponding differences in the zero-point energy corrections, in contrast to earlier suggestions. We also show that the Fdd2 polymorph should be metastable upon decompression up to 5 GPa, which suggests the possibility of obtaining a polymeric ambient-pressure form of SiH_4. Polymeric silane should exhibit facile thermal decomposition with evolution of molecular hydrogen and thus constitute an efficient (12.5 wt%) material for hydrogen storage.
Keywords
Contributors
  • Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
author
  • Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
  • Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
References
  • 1. N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004)
  • 2. C. Narayana, H. Luo, J. Orloff, A.L. Ruoff, Nature (London) 393, 46 (1998)
  • 3. B. Edwards, N.W. Ashcroft, Nature (London) 388, 652 (1997)
  • 4. X.J. Chen, V.V. Struzhkin, Y. Song, A.F. Goncharov, M. Ahart, Z. Liu, H.K. Mao, R.J. Hemley, Proc. Natl. Acad. Sci. USA 105, 20 (2008)
  • 5. O. Degtyareva, M. Martinez-Canales, A. Bergara, X.J. Chen, Y. Song, V.V. Struzhkin, H.K. Mao, R.J. Hemley, Phys. Rev. B 76, 064123 (2007)
  • 6. O. Degtyareva, J.E. Proctor, C.L. Guillaume, E. Gregoryanz, M. Hanfland, Solid State Commun. 149, 1583 (2009)
  • 7. M.I. Eremets, I.A. Trojan, S.A. Medvedev, J.S. Tse, Y. Yao, Science 319, 1506 (2008)
  • 8. W. Grochala, P.P. Edwards, Chem. Rev. 104, 1283 (2004)
  • 9. M.I. Eremets, A.G. Gavriliuk, I.A. Trojan, D.A. Dzivenko, R. Boehler, Nat. Mat. 3, 558 (2004)
  • 10. For a commentary on metastability at high pressure see: V.V. Brazhkin, A.G. Lyapin, Nat. Mat. 3, 497 (2004)
  • 11. X.J. Chen, J.L. Wang, V.V. Struzhkin, H.K. Mao, R.J. Hemley, H.Q. Lin, Phys. Rev. Lett. 101, 077002 (2008)
  • 12. M. Martinez-Canales, A.R. Oganov, Y. Ma, Y. Yan, A.O. Lyakhov, A. Bergara, Phys. Rev. Lett. 102, 087005 (2009)
  • 13. J. Feng, W. Grochala, T. Jaroń, R. Hoffmann, A. Bergara, N.W. Ashcroft, Phys. Rev. Lett. 96, 017006 (2006)
  • 14. C.J. Pickard, R.J. Needs, Phys. Rev. Lett. 97, 045504 (2006)
  • 15. Y. Yao, J.S. Tse, Y. Ma, K. Tanaka, Europhys. Lett. 78, 37003 (2007)
  • 16. D.Y. Kim, R.H. Scheicher, S. Lebègue, J. Prasongkit, B. Arnaud, M. Alouani, R. Ahuja, Proc. Natl. Acad. Sci. USA 105, 16454 (2008)
  • 17. D. Kurzydłowski, W. Grochala, Chem. Commun., 1073 (2008)
  • 18. D. Kurzydłowski, W. Grochala, Z. Anorg. Allg. Chem. 634, 1082 (2008)
  • 19. For details concerning the dynamic stability of different high pressure polymorphs of SiH_4 see Electronic Supplementary Information (ESI), available at http://ltnfm.icm.edu.pl//images/files/sih4_hp_esi_.pdf
  • 20. W.J. Casteel Jr., D.H. Lohmann, N. Bartlett, J. Flourine Chem. 112, 165 (2001)
  • 21. T.J. Frankcombe, G.J. Kroes, A. Züttel, Chem. Phys. Lett. 405, 73 (2005); T.J. Frankcombe, G.J. Kroes, Chem. Phys. Lett. 423, 102 (2006)
  • 22. For the pressure evolution of bond lengths see ESI
  • 23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1997)
  • 24. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)
  • 25. G. Kresse, J. Futhmüller, Phys. Rev. B 54, 11169 (1996); G. Kresse, J. Futhmüller, Comput. Mater. Sci. 6, 15 (1996); G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)
  • 26. K. Parliński, Z.Q. Li, Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997)
  • 27. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)
  • 28. M. Hanfland, J.E. Proctor, C.L. Guillaume, O. Degtyareva, E. Gregoryanz, Phys. Rev. Lett. 106, 095503 (2011)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv119n631kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.