Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 6 | 850-856

Article title

Structural Characteristics and Optical Properties of Thermally Oxidized Zinc Films

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Zinc oxide (ZnO) thin films (with thickness ranged from 780 nm to 1150 nm) were prepared by thermal oxidation in air (at 600-700 K, for 20-30 min) of vacuum evaporated metallic zinc films. The Zn films were deposited on glass substrates at room temperature. The crystalline structure of ZnO thin film samples was investigated using X-ray diffraction technique. The diffraction patterns revealed that the ZnO thin films were polycrystalline and have a wurtzite (hexagonal) structure. The film crystallites are preferentially oriented with (002) planes parallel to substrate surface. Some important structural parameters (lattice parameters of the hexagonal cell, crystallite size, Zn-O bond length, residual stress, etc.) of the films were determined. The surface morphology of the prepared ZnO thin films, investigated by atomic force microscopy, revealed a uniform columnar structure. The spectral dependence of transmission coefficient has been studied in the wavelength range from 300 nm to 1700 nm. The optical energy band gap calculated from the absorption spectra (supposing allowed direct band-to-band transitions) are in the range 3.17-3.19 eV. The dependence of the microstructural and optical characteristics on the preparation conditions (oxidation temperature, oxidation time, etc.) of the oxidized zinc films is discussed.

Keywords

Contributors

author
  • Faculty of Physics, "Al. I. Cuza" University, 11 Carol I Blvd., 700506 Iasi, Romania
author
  • Faculty of Physics, "Al. I. Cuza" University, 11 Carol I Blvd., 700506 Iasi, Romania
author
  • Faculty of Physics, "Al. I. Cuza" University, 11 Carol I Blvd., 700506 Iasi, Romania

References

  • 1. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol 1995
  • 2. Polycrystalline Semiconductors: Physical Properties and Applications, Ed. G. Harbeke, Springer-Verlag, Berlin 1985
  • 3. W.L. Dang, Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.I. Milne, Superlattices Microstruct. 42, 89 (2007)
  • 4. Zinc Oxide Bulk, Thin Films and Nanostructures Processing, Properties and Applications, Eds. C. Jagadiste, S.Y. Pearson, Elsevier, Amsterdam 2006
  • 5. A.P. Râmbu, G.I. Rusu, Superlattices Microstruct. 47, 300 (2010)
  • 6. Y.G. Wang, J. Appl. Phys. 44, 354 (2003)
  • 7. G.G. Rusu, A.P. Rambu, M. Rusu, J. Optoelectron Adv. Mater. 10, 339 (2008)
  • 8. Sunglac Cho, Appl. Phys. Lett. 75, 2761 (1999)
  • 9. Polycrystalline and Amorphous Thin Films and Devices, Ed. L.L. Kazmerski, Academic Press, New York 1980
  • 10. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, J. Alloys Comp. 448, 21 (2008)
  • 11. E.K. Kim, S. Kim, Superlattices Microstruct. 42, 343 (2007)
  • 12. P. Bhattacharya, R.R. Das, R.S. Katiyar, Thin Solid Films 564, 447 (2004)
  • 13. K.L. Chopra, Thin Film Phenomena, McGraw-Hill, New York 1969
  • 14. Z.W. Li, W. Gao, R.J. Reeves, Surf. Coat. Technol. 198, 319 (2005)
  • 15. E.S. Tuzemen, S. Eker, H. Kavak, R. Esen, Appl. Surf. Sci. 255, 6195 (2009)
  • 16. Q.P. Wang, X.J. Zhang, C.Q. Wang, S.H. Chen, X.H. Wu, H.L. Ma, Appl. Surf. Sci. 254, 5100 (2008)
  • 17. K.C. Kim, E.K. Kim, Y.S. Kim, Superlattices Microstruct. 42, 246 (2007)
  • 18. G.G. Rusu, M. Rusu, Solid State Commun. M6, 363 (2000)
  • 19. G.I. Rusu, M.E. Popa, G.G. Rusu, I. Salaoru, Appl. Surf. Sci. 218, 222 (2003)
  • 20. B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, Massachusetts 1978, p. 356
  • 21. American Standard for Testing Materials, X-ray Powder Diffraction Data, File Card 5-0664
  • 22. J.N. Pankove, Optical Processes in Semiconductors, Dover, New York 1971
  • 23. G.I. Rusu, M. Diciu, C. Pirghie, M.E. Popa, Appl. Surf. Sci. 253, 9500 (2007)
  • 24. T. Yamamoto, T. Shiosaki, A. Kawabata, J. Appl. Phys. 51, 3113 (1980)
  • 25. H. Metin, R. Esen, Semicond. Sci. Technol. 18, 647 (2003)
  • 26. S.J. Pearton, D.P. Norton, I.Y. Heo, T. Steiner, J. Vac. Sci. Technol. B 22, 155504 (2004)
  • 27. C.S. Barret, F.B. Massalski, Structure of Metals, Pergamon Press, Oxford 1980
  • 28. J. Tauc, R. Grigorovici, Y. Vancu, Phys. Status Solidi 15, 627 (1966)
  • 29. J. Mass, P. Bhattacharya, R.S. Katiyar, Mater Sci. Eng. B 9, 103 (2003)
  • 30. J. Benn, P.R. Manyon, V.K. Vaedyan, Bull. Mater. Sci. 28, 487 (2005)
  • 31. H.C. Ong, A.X.E. Zhu, G.T. Du, Appl. Phys. Lett. 80, 941 (2002)
  • 32. C. Wang, P. Zhang, J. Yue, Y. Zhang, L. Zheng, Physica B 403, 2235 (2008)
  • 33. M. Smirnov, C. Baban, G.I. Rusu, Appl. Surf. Sci. 256, 2405 (2010)
  • 34. J.K. Furdina, J. Appl. Phys. 64, 29 (1988)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n621kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.