PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 6 | 838-845
Article title

High Frequency Interaction-Induced Anisotropic Rototranslational Light Scattering Spectra of Gaseous Carbon Dioxide

Content
Title variants
Languages of publication
EN
Abstracts
EN
The anisotropic rototranslational scattering of carbon dioxide gas is studied theoretically at 294.5 K, in the frequency range 10-470 cm^{-1}, at a density of 1.026254 mole/litre. The anisotropic double differential cross-section for scattered light is calculated theoretically using new site-site Morse-Morse-Morse-spline-van der Waals intermolecular potentials with the parameters fitted to the different thermophysical and transport properties. Our theoretical calculations take into account multipole contributions from the first- and second-order dipole-induced dipole, first-order dipole-induced octopole and first-order dipole-dipole-quadrupole light scattering mechanisms as well as their cross contributions. The irreducible spherical form for the induced operator of these light scattering mechanisms was determined. The high frequency wings are discussed in terms of the collision-induced rotational Rayleigh effect and estimates for the dipole-octopole polarizability E_4, is obtained and checked with the ab initio theoretical value. Good agreement is obtained at moderate frequencies between the theoretical and experimental spectra. When an exponential contribution exp(-ν/ν_{0}), with ν_0 = 115 cm^{-1} is considered to model very short-range light scattering mechanism, good agreement is found over the whole frequency range.
Keywords
EN
Publisher

Year
Volume
119
Issue
6
Pages
838-845
Physical description
Dates
published
2011-06
received
2010-08-09
(unknown)
2011-01-07
Contributors
author
  • Department of Engineering Mathematics and Physics, Faculty of Engineering, Giza, 12211, Egypt
author
  • Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
author
  • Department of Chemistry, University of Patras, Caratheodory St, GR-26500 Patras, Greece
References
  • 1. D.P. Shelton, G.C. Tabisz, Mol. Phys. 40, 299 (1980)
  • 2. N. Meinander, A.R. Penner, U. Bafile, F. Barocchi, M. Zoppi, D.P. Shelton, G.C. Tabisz, Mol. Phys. 54, 493 (1985)
  • 3. M.S.A. El-Kader, Chem. Phys. 281, 49 (2002)
  • 4. U. Hohm, Chem. Phys. Lett. 379, 380 (2003)
  • 5. M.S.A. El-Kader, S.M. El-Sheikh, M. Omran, Z. Phys. Chem. 218, 1197 (2004)
  • 6. T. Bancewicz, V. Teboul, Y. Le Duff, Phys. Rev. A 46, 1349 (1992)
  • 7. Y. Le Duff, T. Bancewicz, W. Glaz, in: Collision and Interaction-Induced Spectroscopy, NATO ASI Series C: Mathematical and Physical Sciences Eds. G.C. Tabisz, M.N. Neuman, Kluwer Academic, Dordrecht 1994, p. 423
  • 8. Y. Le Duff, R. Ouillon, J. Chem. Phys. 82, 1 (1985)
  • 9. U. Bafile, L. Ulivi, M. Zoppi, F. Barrochi, Phys. Rev. A 37, 1 (1988)
  • 10. M. Moraldi, A. Borysow, L. Frommhold, J. Chem. Phys. 88, 5344 (1988)
  • 11. M.S. Brown, S.K. Wang, L. Frommhold, Phys. Rev. A 40, 2276 (1989)
  • 12. L. Frommhold, J.D. Poli, R.H. Tipping, Phys. Rev. A 46, 2955 (1992)
  • 13. V. Teboul, Y. Le Duff, T. Bancewicz, J. Chem. Phys. 103, 1384 (1995)
  • 14. R.T. Pack, J.J. Valentini, C.H. Becker, R.J. Buss, Y.T. Lee, J. Chem. Phys. 77, 5475 (1982)
  • 15. F. Visser, P.E.S. Wormer, Chem. Phys. 92, 129 (1985)
  • 16. L. Monchick, K.S. Yun, E.A. Mason, J. Chem. Phys. 39, 654 (1963)
  • 17. E.W. Lemmon, M.O. McLinden, NIST Standard Reference Database 23: NIST Reference Fluid Thermodynamic and Transport Properties, Version 7.0 Beta, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg 2001
  • 18. A. Boushehri, J. Bzowski, J. Kestin, E.A. Mason, J. Phys. Chem. Ref. Data 16, 445 (1987)
  • 19. J.H. Dymond, E.B. Smith, The Virial Coefficients of Pure Gases and Mixtures, Oxford University, Oxford 1980
  • 20. V. Vesovic, W.A. Wakeham, G.A. Olchowy, J.V. Sengers, J.T.R. Watson, J. Millat, J. Phys. Chem. Ref. Data 19, 763 (1990)
  • 21. M. Welker, G. Steinebrunner, J. Solca, H. Huber, Chem. Phys. 213, 253 (1996)
  • 22. S. Bock, E. Bich, E. Vogel, Chem. Phys. 257, 147 (2000)
  • 23. A.D. Buckingham, Adv. Chem. Phys. 12, 107 (1967)
  • 24. S. Kielich, Proc. Indian Acad. Sci. (Chem. Sci.) 94, 403 (1985)
  • 25. K.L.C. Hunt, Y.Q. Liang, S. Sethuraman, J. Chem. Phys. 89, 7126 (1988)
  • 26. T. Bancewicz, Mol. Phys. 50, 173 (1983)
  • 27. T. Bancewicz, V. Teboul, Y. Le Duff, Mol. Phys. 81, 1353 (1994)
  • 28. W. Glaz, G.C. Tabisz, Can. J. Phys. 79, 801 (2001)
  • 29. T. Bancewicz, Chem. Phys. Lett. 213, 363 (1993)
  • 30. G. Maroulis, Chem. Phys. 291, 81 (2003)
  • 31. A. Haskopoulos, G. Maroulis, Chem. Phys. Lett. 417, 235 (2006)
  • 32. R.C. Burns, C. Graham, A.R.M. Weller, Mol. Phys. 59, 41 (1986)
  • 33. E. Stoll, Ann. Phys. 69, 81 (1922)
  • 34. D.P. Shelton, A.D. Buckingham, Phys. Rev. A 26, 2787 (1982)
  • 35. D.P. Shelton, J. Chem. Phys. 85, 4234 (1986)
  • 36. T. Bancewicz, W. Glaz, S. Kielich, Phys. Lett. A 148, 78 (1990)
  • 37. G. Birnbaum, E.R. Cohen, Can. J. Phys. 54, 593 (1976)
  • 38. F. Barocchi, A. Guasti, M. Zoppi, G.C. Tabisz, S.M. El-Sheikh, N. Meinander, Phys. Rev. A 39, 4537 (1989)
  • 39. M. Chrysos, A.P. Kouzov, N.I. Egorova, F. Rachet, Phys. Rev. Lett. 100, 133007 (2008)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv119n619kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.