Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 6 | 731-739

Article title

Self-Ordered Front under Temporally Irregular Forcing: Ratchet-Like Transport of the Quasi-Periodically Forced Front

Content

Title variants

Languages of publication

EN

Abstracts

EN
Ratchet-like transport of the quasi-periodically forced "bistable" front joining two states of the different stability in the reaction-diffusion system is considered by use of the piecewise linear rate (reaction) function of the reaction kinetics. We approximate the oscillatory force acting on the front in the system by the bi-harmonic forcing functions being a superposition of the single-harmonic components (the Fourier modes) of the different frequencies, either commensurate or incommensurable ones. By considering the response of the self-ordered front to the oscillatory forces used we analyze the effect of the temporally irregular oscillations of the ac forcing on the ratchet-like shuttling of the ac driven front. By comparing the average characteristics of the spurious drift derivable in both cases of the periodically and quasi-periodically forced fronts we show that the temporally irregular fluctuations of the oscillatory force shrink the spurious drift of the front. More specifically, we find the performance of the ratchet-like shuttling of the self-ordered fronts is much lesser pronounced with the quasi-periodic, temporally irregular ac forcing if compared to that derivable by the rigorously periodic forcing, in both cases of the symmetrical and asymmetrical rate functions satisfying the different symmetry. The average characteristics of the spurious drift, that describe the dependence of the mean drift velocity of the ac driven front versus both the amplitude (strength) and the frequency of the oscillatory forces used are presented.

Keywords

EN

Contributors

author
  • Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
author
  • Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
  • Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania
author
  • Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

References

  • 1. F. Julicher, A. Adjari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997); P. Reimann, Phys. Rep. 361, 57 (2002); R. Mallik, P. Gross, Current Biology 14, R971 (2004); P. Hanggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)
  • 2. A V. Savin, G.P. Tsironis, Y. Zolotariuk, Phys. Rev. E 56, 2457 (1997); G. Costantini, F. Marchesoni, M. Borromeo, Phys. Rev. E 65, 051103 (2002); M. Salerno, Y. Zolotaryuk, Phys. Rev. E 65, 056603 (2002); M. Salerno, N.R. Quintero, Phys. Rev. E 65, 025602 (2002); S. Flach, Y. Zolotaryuk, A.E. Morishnichenko, M.V. Fistul, Phys. Rev. Lett. 88, 184101 (2002); L. Morales-Molina, N.R. Quintero, F.G. Mertens, A. Sanchez, Phys. Rev. Lett. 91, 234102 (2003); N.R. Quintero, B. Sanchez-Rey, M. Salerno, Phys. Rev. E 72, 016610 (2005); L. Morales-Molina, N.R. Quintero, A. Sanchez, F.G. Mertens, Chaos 16, 013117 (2006)
  • 3. J. Armero, J.M. Sancho, J. Casademunt, A.M. Lacasta, L. Ramirez-Piscina, F. Sagues, Phys. Rev. Lett. 76, 3045 (1996); J. Armero, J. Casademunt, L. Ramirez-Piscina, J.M. Sancho, Phys. Rev. E 58, 5494 (1998); M.A. Santos, J.M. Sancho, Phys. Rev. E 64, 016129 (2001); Ch.R. Doering, C. Muller, P. Smereka, Physica A 325, 243 (2003)
  • 4. M. Buttiker, R. Landauer, Phys. Rev. A 23, 1397 (1981); A.S. Mikhailov, L. Schimansky-Geier, W. Ebeling, Phys. Lett. A 96, 453 (1983); J.M. Sancho, A. Sanchez, Eur. Phys. J. B 16, 127 (2000)
  • 5. D.J. Kaup, Phys. Rev. B 27, 6787 (1983); L. Schimansky-Geier, Ch. Zulicke, Z. Phys. B, Condens. Matter 82, 157 (1991)
  • 6. F. Marchesoni, Phys. Rev. Lett. 77, 2364 (1996)
  • 7. N. Quintero, A. Sanchez, F.G. Mertens, Phys. Rev. E 60, 222 (1999)
  • 8. M.G. Clerc, C. Falconi, E. Tirapegui, Phys. Rev. Lett. 94, 148302 (2005)
  • 9. F.G. Bass, R. Bakanas, Europhys. Lett. 53, 444 (2001)
  • 10. R. Bakanas, Phys. Rev. E 69, 016103 (2004)
  • 11. R. Bakanas, Phys. Rev. E 71, 026201 (2005)
  • 12. R. Bakanas, Phys. Rev. E 78, 046202 (2008)
  • 13. M. Bleck, E. Goldobin, M. Neuhaus, M. Siegel, R. Kleiner, D. Koelle, Phys. Rev. Lett. 95, 090603 (2005)
  • 14. S. Flach, Y. Zolotaryuk, A.E. Miroshnichneko, M.V. Fistul, Phys. Rev. Lett. 88, 184101 (2002); M. Salerno, Y. Zolotaryuk, Phys. Rev. E 65, 056603 (2002)
  • 15. S. Denisov, S. Flach, A.A. Ovchinnikov, O. Yevtushenko, Y. Zolotaryuk, Phys. Rev. E 66, 041104 (2002); R. Gommers, S. Denisov, F. Renzoni, Phys. Rev. Lett. 96, 240604 (2006)
  • 16. J.P. Gleeson, Physica A 388, 277 (2009); P.R. Kramer, O. Kurbanmuradov, K. Sabelfeld, J. Comp. Phys. 226, 897 (2007)
  • 17. M. Locher, D. Cigna, E.R. Hunt, Phys. Rev. Lett. 80, 51212 (1998)
  • 18. R. Bakanas, Nonlinearity 16, 313 (2003)
  • 19. A. Raguotis, F. Ivanauskas, R. Bakanas, Phys. Scr. 74, 629 (2006)
  • 20. R. Bakanas, A. Raguotis, F. Ivanauskas, Phys. Scr. 77, 055003 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n601kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.