Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 4 | 542-547
Article title

Semi-Automatic Analysis of Gyrotropic Semiconductor Waveguides Using Neural Network

Title variants
Languages of publication
This paper focuses on the analysis technique of gyrotropic circular cylindrical semiconductor waveguide by the use of an electrodynamical model. Authors propose the semi-automatic extraction of the dispersion characteristics by the use of single-layer perceptron neural network. The waveguide analysis algorithm consists of four main stages: initialization of system parameters, evaluation of transcendental linear dispersion equation system, extraction of dispersion characteristics and evaluation of the waveguide broad bandwidth. In this paper three types of waveguides (n-InP, n-InSb and p-InP) are analysed using a proposed algorithm. According to the results of analysis, the use of gyrotropic n-InP and p-InP semiconductor, semiconductor-dielectric waveguides are more preferred than to n-InSb waveguides due to their wider broad bandwidth.
Physical description
  • 1. N. Zaitsev, I. Kulagin, S. Kuzikov, M. Plotkin, I. Syratchev, in: Infrared and Millimeter Waves, 2007 and the 15-th International Conference on Terahertz Electronics, IRMMW-THz, Joint 32nd Int. Conf., Eds. M.J. Griffin, P.C. Hargrave, T.J. Parker, K.P. Woo, Institute of Electrical and Electronic Engineer, Cardiff (UK) 2007, p. 369
  • 2. D. Loik, M. Nefedov, E. Nikishin, in: Actual Problems of Electron Devices Engineering, 2008, APEDE' 08, Int. Conf., Ed. V.A. Tsarev, publisher: Saratov State Technical University, Saratov (Russia) 2008, p. 324
  • 3. M. Yeddulla, S. Tantawi, J. Guo, V. Dolgashev, Microwave Theory Techn. 6, 57 (2009)
  • 4. C.W. Yuan, Q. Zhang, Plasma Sci. 10, 37 (2009)
  • 5. G. Gentili, L. Lucci, R. Nesti, G. Pelosi, S. Selleri, Microwave Theory Techn. 7, 57 (2009)
  • 6. M. Dillon, A. Gibson, J. Webb, Microwave Theory Techn. 5, 41 (1993)
  • 7. D.M. Sullivan, Electromagnetic Simulation Using the FDTD Method, Institute of Electrical and Electronics Engineers, New York 2000
  • 8. L. Nickelson, V. Shugurov, Singular Integral Equations' Methods for the Analysis of Microwave Structures, VSP Publishing Int. Sci. Publ., Leiden 2005
  • 9. B.J. Hu, G. Wei, Plasma Sci. 1, 29 (2001)
  • 10. N. Dib, A. Omar, Microwave Theory Techn. 7, 50 (2002)
  • 11. D. Rovetta, A. Bosisio, G. Drufuca, Microwave Wireless Components Lett. 5, 16 (2006)
  • 12. S. Asmontas, L. Nickelson, V. Malisauskas, Electron. Electr. Eng. 2, 66 (2006)
  • 13. L. Nickelson, S. Asmontas, V. Malisauskas, V. Sugurovas, Open Cylindrical Gyrotropic Wavequides, Technika, Vilnius 2007
  • 14. L. Nickelson, S. Asmontas, V. Malisauskas, R. Martavicius, Plasma Phys. 1, 75 (2008)
  • 15. D. Navakauskas, Informatica 2, 14 (2003)
  • 16. S. Paulikas, D. Navakauskas, Informatica 2, 17 (2006)
  • 17. D. Matuzevicius, D. Navakauskas, in: Proc. 11th Int. Biennial Baltic Electronics Conf., Ed. J. Engelbrecht, Tallinn University of Technology, Tallinn (Estonia) 2008, p. 341
  • 18. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan Books, Washington 1962
  • 19. D. Plonis, V. Malisauskas, A. Serackis, in: Microwave Radar and Wireless Communications (MIKON), 2010 18th Int. Conf., Ed. B. Levitas, Geozondas, Vilnius (Lithuania) 2010, p. 508
  • 20. E.D. Palik, J.K. Furdyna, Rep. Prog. Phys. 12, 33 (1970)
  • 21. L. Nickelson, T. Gric, S. Asmontas, R. Martavicius, Electron. Electr. Eng. 2, 82 (2008)
  • 22. K.Y. Kim, H.S. Tae, J.H. Lee, Electron. Lett. 39, 61 (2003)
  • 23. C. Yeh, F.I. Shimabukuro, The Essence of Dielectric Waveguides, Springer Science, Business Media, USA 2008
  • 24. S.M. Sze, Physics of Semiconductor Devices, Wiley, USA 1981
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.