Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 3 | 447-450

Article title

Three-Dimensional Simulations of the Anisotropic Etching Profile Evolution for Producing Nanoscale Devices

Content

Title variants

Languages of publication

EN

Abstracts

EN
Refined control of etched profiles is one of the most important tasks of micro (nano) electro mechanical systems manufacturing process. In spite of its wide use, the simulation of etching for micro (nano) electro mechanical systems applications has been so far a partial success only, although a great number of commercial and academic research tools dedicated to this problem are developed. In this paper we describe an application of the sparse field method for solving level set equations in 3D anisotropic wet etching of silicon with potassium hydroxide (KOH). Angular dependence of the silicon etching rate is determined on the basis of the silicon crystal symmetry properties. Some examples illustrating developed methodology are given.

Keywords

EN

Year

Volume

119

Issue

3

Pages

447-450

Physical description

Dates

published
2011-03
received
2010-02-27
(unknown)
2010-11-18

Contributors

  • Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia
  • Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia

References

  • 1. M. Elwenspoek, H.V. Jansen, Silicon Micromachining, Cambridge University Press, Cambridge, UK 1998
  • 2. J. Sethian, Level Set Methods and Fastmarching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences, Cambridge University Press, Cambridge, UK 1998
  • 3. S. Osher, R. Fedkiw, Level Set Method and Dynamic Implicit Surfaces, Springer-Verlag, New York, NY 2003
  • 4. R. Whitaker, Int. J. Comp. Vision 29, 203 (1998)
  • 5. L. Evans, Partial Differential Eqautions, American Mathematical Society, Providence, RI 1998
  • 6. B. Radjenović, J.K. Lee, M. Radmilović-Radjenović, Computer Phys. Commun. 174, 127 (2006)
  • 7. J.A. Sethian, D. Adalsteinsson, IEEE Trans. Semicond. Dev. 10, 167 (1996)
  • 8. T.J. Hubbard, Ph.D. Thesis, California Institute of Technology, 1994
  • 9. K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, Sensors Actuators A 64, 87 (1988)
  • 10. NLM Insight Segmentation and Registration Toolkit, http://www.itk.org
  • 11. M. Buerger, Elementary Crystallography, Wiley, New York, Chapman & Hall, London 1956
  • 12. M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, Sensors Actuators A 80, 179 (2000)
  • 13. B. Radjenović, M. Radmilović-Radjenović, M. Mitrić, Appl. Phys. Lett. 89, 213102 (2006)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n328kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.