Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 3 | 408-415

Article title

Electrical Transport and Electronic Structure Calculation of Al-Ga Binary Alloys

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The Harrison first principle pseudopotential technique based on the concept of orthogonalized plane waves has been used to study the liquid electrical resistivity and other physical properties viz., Knight shift, Fermi energy and electronic density of states of liquid binary alloys of simple metals. We have also performed a first-principles calculation of the electronic band structure of Al-Ga binary alloy at equiatomic composition employing the full-potential linearized augmented plane wave method. Total energy minimization enables us to estimate the equilibrium volume, bulk modulus and its pressure derivative. We have also described the total density of states and the partial density of states around the Fermi energy.

Keywords

Contributors

author
  • Department of Physics, Andhra Loyola College, Vijayawada - 520008, A.P., India
author
  • Department of Physics, Andhra Loyola College, Vijayawada - 520008, A.P., India

References

  • 1. B.C. Anusionwu, G.A. Adebayo, C.A. Madu, Appl. Phys. A 97, 533 (2009)
  • 2. D. Es. Sbihi, B. Grosdidier, I. Kaban, S. Gruner, W. Hoyer, J.-G. Gasser, J. Phys., Condens. Matter 21, 245107 (2009)
  • 3. B.C. Anusionwu, C.A. Madu, C.E. Orji, Pramana 72, 951 (2009)
  • 4. C. Ravi, C. Wolverton, Acta Mater. 52, 4213 (2004)
  • 5. C. Wolverton, Acta Mater. 49, 3129 (2010)
  • 6. A. Kumar, S.M. Rafique, N. Jha, T.P. Sinha, Physica B 404, 1933 (2009)
  • 7. B. Straumal, S. Risser, V. Sursaeva, B. Cheval, W. Gust, J. Phys. (France) IV 5, C7-233 (1995)
  • 8. C. Papastaikoudis, N. Kontoleon, K. Papathanasopoulos, P. Andronikos, Phys. Rev. B 11, 2072 (1975)
  • 9. C. Herring, Phys. Rev. 57, 1169 (1940)
  • 10. J.B. Phillips, L. Kleinman, Phys. Rev. 116, 287 (1959)
  • 11. N.W. Ashcroft, D.C. Langreth, Phys. Rev. 155, 682 (1967)
  • 12. J.E. Enderby, D.M. North, Phys. Chem. Liq. 1, 1 (1968)
  • 13. W.F. King, III, P.H. Cutler, J. Phys. F 5, L187 (1975)
  • 14. J. Hafner, Solid State Commun. 27, 263 (1978)
  • 15. W.A. Harrison, Pseudopotential in the Theory of Metals, Benjamin Inc., New York 1966
  • 16. F. Herman, J. Skillman, Atomic Structure Calculation, Prentice Hall Inc., Englewood Cliffs, New Jersey 1963
  • 17. E. Clementi, IBM J. Res. Dev. 9, 2 (1965)
  • 18. N.W. Ashcroft, D.C. Langreth, Phys. Rev. 156, 685 (1967)
  • 19. N.W. Ashcroft, D.C. Langreth, Phys. Rev. 159, 500 (1967)
  • 20. J.M. Ziman, Philos. Mag. 6, 1013 (1961)
  • 21. T.E. Faber, J.M. Ziman, Philos. Mag. 11, 153 (1965)
  • 22. S.D. Mahanti, T.P. Das, Magnetic Resonance, Plenum Press, New York 1970, p. 91
  • 23. W.D. Knight, in: Solid State Physics Vol. 2, Eds. F. Seitz, D. Turnbull, Acad. Press, New York 1956
  • 24. J.C. Slater, Phys. Rev. 81, 385 (1951)
  • 25. C.G. Bradley, T.E. Faber, E.G. Wilson, J.M. Ziman, Philos. Mag. 7, 865 (1962)
  • 26. J.M. Ziman, Adv. Phys. 13, 89 (1964)
  • 27. T. Muto, S. Kobayasi, M. Watabe, H. Kozima, J. Phys. Chem. Solids 23, 1303 (1962)
  • 28. P.K. Mishra, L.M. Roth, Phys. Rev. 177, 1089 (1969)
  • 29. B. Mishra, L.K. Das, T. Sahu, G.S. Tripathi, P.K. Mishra, J. Phys., Condens. Matter 2, 9891 (1990)
  • 30. G.S. Tripathi, C.M. Mishra, P. Tripathi, P.K. Mishra, Phys. Rev. B 39, 94 (1989)
  • 31. G.E. Pake, in: Solid State Physics, Vol. 2, Eds. F. Seitz, D. Turnbull, Acad. Press, New York 1956, p. 1
  • 32. K. Furuya, K. Ogawa, Y. Mineo, A. Matsufiji, J. Okude, T. Erata, J. Phys., Condens. Matter 13, 3519 (2001)
  • 33. N.W. Ashcroft, J. Phys. C 2, 232 (1968)
  • 34. R.W. Shaw, N.V. Smith, Phys. Rev. 178, 985 (1969)
  • 35. T. Schneider, E. Stoll, Adv. Phys. 16, 731 (1967)
  • 36. P. Jena, N.C. Halder, Phys. Rev. Lett. 26, 1024 (1971)
  • 37. P. Jena, N.C. Halder, Phys. Rev. B 6, 2131 (1972)
  • 38. E. Stoll, N. Szabo, T. Schneider, Phys. Kond. Mat. 12, 279 (1971)
  • 39. N.C. Halder, in: The Properties of Liquid Metal, Ed. S. Takeuchi, Taylor and Francis, London 1973, p. 337
  • 40. K. Ichikewa, Philos. Mag. 27, 177 (1973)
  • 41. J.P. Dixit, S.K. Nigam, Int. J. Pure Appl. Phys. 11, 433 (1973)
  • 42. S.K. Srivastava, J. Phys. Chem. Solids 36, 993 (1974)
  • 43. S.K. Srivastava, Phys. Status Solidi B 61, 731 (1975)
  • 44. K. Kumar, M.P. Hemker, Phys. Status Solidi B 29, 82 (1977)
  • 45. M. Watabe, M. Tanaka, Prog. Theor. Phys. 31, 525 (1964)
  • 46. L.E. Ballentine, Can. J. Phys. 44, 1533 (1966)
  • 47. T. Chan, L.E. Ballentine, Phys. Chem. Liq. 2, 165 (1971)
  • 48. T. Chan, L.E. Ballentine, Can. J. Phys. 50, 813 (1972)
  • 49. T. Itami, M. Shimoji, Philos. Mag. 25, 229 (1972 b)
  • 50. L.E. Ballentine, T. Chan, in: The Properties of Liquid Metal, Ed. S. Takeuchi, Taylor and Francis, London 1973, p. 197
  • 51. M. Kuroha, K. Suziki, Phys. Lett. 47A, 329 (1974)
  • 52. J. Thakur, Phys. Status Solidi B 99, (1980)
  • 53. S. Sinha, Ph. D. Thesis, T.M.B. Univ., Bhagalpur, India 1988
  • 54. Solid State Physics Vol.24,
  • 55. M. Appapillai, A.R. Williams, J. Phys. F: Met. Phys. 3, 759 (1973)
  • 56. T.E. Faber, Introduction to the Theory of Liquid Metals, Cambridge University Press, London 1972
  • 57. M. Shimoji, Liquid Metals, Acad. Press, London 1977
  • 58. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN 2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001
  • 59. S. Raju, E. Mohandas, V.S. Raghunathan, J. Phys., Condens. Matter 58, 136 (1997)
  • 60. S.B. Nagel, J. Taue, Phys. Rev. Lett. 35, 390 (1975)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n322kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.