Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 3 | 304-311

Article title

System Dynamics Control through the Fractal Potential

Content

Title variants

Languages of publication

EN

Abstracts

EN
Implications of the fractal potential in the system dynamics using an extended scale relativity model assuming the fractal character of the particle movements, are established. So, in the dissipative approximation of the model it is shown that the fractal potential comes from the non-differentiability of the space-time, i.e. by means of imaginary part of a complex speed field. In the dispersive approximation of the same model, the fractalization of the differential part of the complex speed field induces a normalized fractal potential which controls through coherence the system dynamics. In such context the type I superconductivity results: the temperature dependences of the superconducting parameter, the accumulator effect etc.

Keywords

EN

Contributors

author
  • Faculty of Physics, "Al. I. Cuza" University, Iasi 700050, Romania
  • Faculty of Electronics and Telecomunications, "Gh. Asachi" Technical University, Iasi 700514, Romania
author
  • Department of Fluid Mechanics, "Gh. Asachi" Technical University, Iasi 700514, Romania
author
  • Department of Physics, University of Athens, Athens 15771, Greece
  • Laboratoire de Physique des Lasers, Atomes et Molécules, Centre d’Etudes et de Recherches Lasers et Applications, Université Lille 1 Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France
  • Department of Physics, "Gh. Asachi" Technical University, Iasi 700514, Romania

References

  • 1. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco 1982
  • 2. E. Nelson, Quantum Fluctuations, Princeton Univ. Press, New York 1985
  • 3. J. Feder, A. Aharony, Fractals in Physics, North-Holland, Amsterdam 1990
  • 4. J.F. Gouyet, Physique et Structures Fractals, Masson, Paris 1992
  • 5. L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity, World Scientific, Singapore 1993
  • 6. M.S. El Naschie, O.E. Roessler, I. Prigogine, Quantum Mechanics, Diffusion and Chaotic Fractal, Elsevier, Oxford 1995
  • 7. J. Argyris, C. Ciubotariu, G. Mattutis, Chaos, Solitons Fractals 12, 1 (2001)
  • 8. Space-time Physics and Fractality, Eds. P. Weibel, G. Ord, G. Rössler, Springer, Vienna 2005
  • 9. L. Nottale, The Universe and the light. Classical cosmology and gravitational mirage, Flammarion, Paris 1993 (in French)
  • 10. L. Nottale, Relativity in all its forms: from movements to scale changes, Hachette, Paris 1998 (in French)
  • 11. L. Nottale, J. Chaline, P. Grou, The trees of evolution, Hachette, Paris 2000 (in French)
  • 12. C.P. Cristescu, Nonlinear Dynamics and Chaos in Science and Engineering, Academy Publishing House, Bucharest 2008
  • 13. L. Nottale, in: Proc. First Int. Conf. on the Evolution and Development of the Universe, Paris 2008, p. 15
  • 14. L. Nottale, Ch. Auffray, Prog. Biophys. Mol. Biol. 97, 115 (2008)
  • 15. L. Nottale, J. Phys. A, Math. Theor. 42, 275306 (2009)
  • 16. L. Nottale, Chaos, Solitons Fractals 9, 1051 (1998)
  • 17. L. Nottale, Chaos, Solitons Fractals 10, 459 (1999)
  • 18. L. Nottale, Chaos, Solitons Fractals 16, 539 (2003)
  • 19. D. Da Rocha, L. Nottale, Chaos, Solitons Fractals 16, 565 (2003)
  • 20. L. Nottale, Chaos, Solitons Fractals 25, 797 (2005)
  • 21. L. Nottale, M.N. Célérier, T. Lehner, J. Math. Phys. 47, 032303 (2006)
  • 22. M.N. Célérier, L. Nottale, J. Phys. A, Math. Gen. 37, 931 (2004)
  • 23. D. Bohm, Phys. Rev. 85, 166 (1952)
  • 24. D. Bohm, Phys. Rev. 85, 180 (1952)
  • 25. D. Bohm, Phys. Rev. 89, 458 (1953)
  • 26. D. Bohm, B.J. Hihey, Phys. Rev. Lett. 55, 2511 (1985)
  • 27. D. Bohm, B.J. Hihey, The Undivided Universe: An Ontological Interpretation of Quantum Theory, Ronthege Kegan Paul, London 1993
  • 28. P.R. Holland, The Quantum Theory of Motion, Cambridge University Press, Cambridge 1993
  • 29. M. Agop, O. Niculescu, A. Timofte, L. Bibire, A.S. Ghenadi, A. Nicuta, C. Nejneru, G.V. Munceleanu, Int. J. Theor. Phys., DOI: 10.1007/s10773-010-0330-5
  • 30. C.Gh. Buzea, C. Bejinariu, C. Boris, P.V. Vizureanu, M. Agop, Int. J. Nonlin. Sci. Numer. Simul. 10, 1399 (2009)
  • 31. M. Agop, G.V. Munceleanu, O. Niculescu, T. Dandu-Bibire, Phys. Scr. 82, 015010 (2010)
  • 32. P.D. Ioannou, P. Nica, V. Paun, P. Vizureanu, M. Agop, Phys. Scr. 78, 065101 (2008)
  • 33. C.Gh. Buzea, I. Rusu, V. Bulancea, Gh. Badarau, V.P. Paun, M. Agop, Phys. Lett A 374, 2757 (2010)
  • 34. M. Agop, P.E. Nica, P.D. Ioannou, A. Antici, V.P. Paun, Euro Phys. J. D 49, 239 (2008)
  • 35. M. Agop, P.E. Nica, S. Gurlui, C. Focsa, V.P. Paun, M. Colotin, Euro Phys. J. D 10.11.40/epjd/e2009_00304-5
  • 36. S. Gurlui, M. Agop, P. Nica, M. Ziskind, C. Focsa, Phys. Rev. E 78, 026405 (2008)
  • 37. O. Niculescu, D.G. Dimitriu, V.P. Paun, P.D. Matasaru, D. Scurtu, M. Agop, Phys. Plasmas 17, 042305 (2010)
  • 38. S. Gurlui, M. Agop, M. Strat, G. Strat, S. Bacaita, A. Cerepaniuc, Phys. Plasmas 13, 063503 (2006)
  • 39. M. Agop, P. Nica, M. Gartu, Gen. Relativ. Gravit. 401, 35 (2008)
  • 40. P. Nica, P. Vizureanu, M. Agop, S. Gurlui, C. Focsa, N. Forna, P.D. Ioannou, Z. Borsos, Jpn. J. Appl. Phys. 48, 066001 (2009)
  • 41. C. Stan, C.P. Cristescu, D. Alexandroaie, M. Agop, Chaos Solitons Fractals 41, 727 (2009)
  • 42. M. Agop, C. Radu, T. Bontas, Chaos Solitons Fractals 38, 1243 (2008)
  • 43. C.P. Cristescu, B. Mereu, C. Stan, M. Agop, Chaos Solitons Fractals 40, 975 (2009)
  • 44. L. Delle Site, Europhys Lett. 57, 20 (2002)
  • 45. L. Delle Site, Physica A 313, 453 (2002)
  • 46. M. Colotin, G.O. Pompilian, P. Nica, S. Gurlui, V. Paun, M. Agop, Acta Phys. Pol. A 116, 157 (2009)
  • 47. J. Cresson, Int. J. Geometric Meth. Mod. Phys. 3, 1395 (2006)
  • 48. J. Cresson, J. Math. Anal. Appl. 307, 48 (2005)
  • 49. J. Cresson, F. Ben Adda, Chaos Solitons Fractals 19, 1323 (2004)
  • 50. J. Cresson, J. Math. Phys. 44, 4907 (2003)
  • 51. J. Cresson, Chaos Solitons Fractals 14, 553 (2002)
  • 52. J. Cresson, F. Ben Adda, J. Math. Anal. Appl. 262, 721 (2001)
  • 53. J. Cresson, J.-N. Denarie, Lecture Notes in Physics, Planat, Paris 2000
  • 54. J. Cresson, F. Ben Adda, C.R. Acad. Sci. Paris 330, 261 (2000)
  • 55. M. Agop, A. Harabagiu, P. Nica, Acta Phys. Pol. A 113, 1557 (2008)
  • 56. L. Nottale, Chaos Solitons Fractals 7, 877 (1996)
  • 57. D.K. Ferry, S.M. Goodnick, Transport in Nanostructures, Cambridge University Press, Cambridge 1997
  • 58. L. Nottale, G. Schumacher, E.T. Lefevre, Astron. Astrophys. 361, 384 (2000)
  • 59. E.A. Jackson, Perspectives in Nonlinear Dynamics, Vol. I+II, Cambridge University, Cambridge 1991
  • 60. F. Bowman, Introduction to Elliption Function with Applications, English University Press, London 1997
  • 61. C.P. Poole, H.A. Farach, R.J. Creswick, Superconductivity, Academic Press, San Diego 1995
  • 62. M. Chaichian, F.N. Nelipa, Introduction to Gauge Field Theories, Springer, Berlin 1984
  • 63. J.R. Schrieffer, Theory of Superconductivity, Benjamin, New York 1964
  • 64. Superconductivity, Ed. R.D. Parks, Vol. I, II, Dekker, New York 1969

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n305kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.