Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 3 | 298-303

Article title

Perturbation to Symmetry and Adiabatic Invariants of General Discrete Holonomic Dynamical Systems

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper investigates perturbation to the Noether symmetry of discrete holonomic nonconservative dynamical systems on a uniform lattice. Firstly, we give the Noether theorem of system. Secondly, both criterion of perturbation to the Noether symmetry and the Noether adiabatic invariants of system are obtained. Finally, an example is given to illustrate these results.

Keywords

EN

Contributors

author
  • College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
author
  • College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China

References

  • 1. E. Noether, Kgl. Ges. Wiss. Nachr. Göttingen Math. Phys. 2, 235 (1918)
  • 2. D.S. Djukić, B.D. Vujanović, Acta Mech. 23, 17 (1975)
  • 3. W. Sarlet, F. Cantrijn, SIAM Rev. 23, 467 (1981)
  • 4. L.Y. Bahar, H.G. Kwatny, Int. J. Non-Linear Mech. 22, 125 (1987)
  • 5. M. Lutzky, J. Phys. A, Math. Gen. 12, 973 (1979)
  • 6. G.E. Prince, C.J. Eliezer, J. Phys. A, Math. Gen. 14, 587 (1981)
  • 7. F.X. Mei, Symmetries and Conserved Quantities of Constrained Mechanical Systems, Institute of Technology Press, Beijing 2004 (in Chinese)
  • 8. S.A. Hojman, J. Phys. A, Math. Gen. 25, L291 (1992)
  • 9. M. Lutzky, J. Phys. A, Math. Gen. 28, L637 (1995)
  • 10. J. Goedert, F. Haas, Phys. Lett. A 239, 348 (1998)
  • 11. Y.X. Guo, S.K. Luo, M. Shang, F.X. Mei, Rep. Math. Phys. 47, 313 (2001)
  • 12. J.L. Fu, L.Q. Chen, J. Salvador, Y.F. Tang, Phys. Lett. A 358, 5 (2006)
  • 13. Y. Zhang, Chin. Phys. B 18, 4636 (2009)
  • 14. J.H. Fang, M.J. Zhang, W.W. Zhang, Phys. Lett. A 374, 1801 (2010)
  • 15. J.L. Cai, Acta Phys. Pol. A 117, 445 (2010)
  • 16. S. Maeda, Math. Jpn. 25, 405 (1980)
  • 17. D. Levi, P. Winternitz, J. Math. Phys. 37, 5551 (1996)
  • 18. D. Levi, S. Tremblay, P. Winternitz, J. Phys. A, Math. Gen. 34, 9507 (2001)
  • 19. V.A. Dorodnitsyn, J. Sov. Math. 55, 1490 (1991)
  • 20. V.A. Dorodnitsyn, R.V. Kozlov, P. Winternitz, J. Math. Phys. 41, 480 (2000)
  • 21. V.A. Dorodnitsyn, Appl. Numer. Math. 307, 321 (2001)
  • 22. J.E. Marsden, M. West, Acta Numer. 357 (2001)
  • 23. P.E. Hydon, Proc. R. Soc. A 456, 2835 (2000)
  • 24. H.B. Zhang, L.Q. Chen, R.W. Liu, Chin. Phys. 14, 1063 (2005)
  • 25. J.L. Fu, B.Y. Chen, L.Q. Chen, Phys. Lett. A 373, 409 (2009)
  • 26. Y.Y. Zhao, F.X. Mei, Symmetries and Invariants of Mechanical Systems, Science Press, Beijing 1999 (in Chinese)
  • 27. V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, J. Sov. Math. 55, 1450 (1991)
  • 28. V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, in: CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 3, Ed. N.H. Ibragimov, CRC Press, Boca Raton, Florida 1996, p. 31
  • 29. A.H. Kara, F.M. Mahomed, G. Ünal, Int. J. Theor. Phys. 38, 2389 (1999)
  • 30. A.G. Johnpillai, A.H. Kara, Int. J. Theor. Phys. 40, 1501 (2001)
  • 31. J.L. Fu, L.Q. Chen, Phys. Lett. A 324, 95 (2004)
  • 32. X.W. Chen, Y.M. Li, Y.H. Zhao, Phys. Lett. A 337, 274 (2005)
  • 33. Y. Zhang, C.X. Fan, F.X. Mei, Acta Phys. Sin. 55, 3237 (2006) (in Chinese)
  • 34. S.K. Luo, Acta Phys. Sin. 57, 5580 (2007) (in Chinese)
  • 35. P. Wang, J.H. Fang, X.M. Wang, Chin. Phys. Lett. 26, 034501 (2009)
  • 36. M.J. Zhang, J.H. Fang, K. Lu, Int. J. Theor. Phys. 49, 427 (2010)
  • 37. N. Ding, X.F. Chen, J.H. Fang, C.Z. Liu, Phys. Lett. A 373, 3005 (2009)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n304kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.