PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 2 | 222-224
Article title

Monte Carlo Analysis of Impact Ionization in Isolated-Gate InAs/AlSb High Electron Mobility Transistors

Content
Title variants
Languages of publication
EN
Abstracts
EN
We perform a physical analysis of the kink effect in InAs/AlSb high electron mobility transistors by means of a semiclassical 2D ensemble Monte Carlo simulator. Due to the small bandgap of InAs, InAs/AlSb high electron mobility transistors are very susceptible to suffer from impact ionization processes, with the subsequent hole transport through the structure, both implicated in the kink effect. When the drain-to-source voltage V_{DS} is high enough for the onset of impact ionization, holes generated tend to pile up at the gate-drain side of the buffer. This occurs due to the valence-band energy barrier between the buffer and the channel. Because of this accumulation of positive charge, the channel is further opened and the drain current I_{D} increases, leading to the kink effect in the I-V characteristics.
Keywords
EN
Publisher

Year
Volume
119
Issue
2
Pages
222-224
Physical description
Dates
published
2011-02
Contributors
author
  • Dpto. Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
author
  • Dpto. Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
author
  • Dpto. Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
author
  • Osram Semiconductor, Regensburg, Germany
author
  • Department of Microtechnology and Nanoscience - MC2, Chalmers, University of Technology, SE-412 96 Göteborg, Sweden
author
  • Department of Microtechnology and Nanoscience - MC2, Chalmers, University of Technology, SE-412 96 Göteborg, Sweden
author
  • Dpto. Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
References
  • 1. C.R. Bolognesi, M.W. Dvorak, D.H. Chow, IEEE Trans. Electron Dev. 46, 826 (1999)
  • 2. W. Kruppa, J.B. Boos, B.R. Bennett, N.A. Papanicolaou, D. Park, Robert Bass, IEEE Trans. Electron Dev. 54, 1193 (2007)
  • 3. Y.C. Chou, M.D. Lange, B.R. Brennett, J.B. Boos, J.M. Yang, N.A. Papanicolau, C.H. Lim, IEEE Electron Dev. Lett. 28, 856 (2007)
  • 4. M. Malmkvist, E. Lefebvre, M. Borg, L. Desplanque, X. Wallart, G. Dambrine, S. Bollaert, J. Grahn, IEEE Trans. Microwave Theory Tech. 56, 2685 (2008)
  • 5. E. Lefebvre, M. Malmkvist, M. Borg, L. Desplanque, X. Wallar, G. Dambrine, S. Bollaert, J. Grahn, IEEE Trans. Electron Dev. 56, 1904 (2009)
  • 6. J. Mateos, T. González, D. Pardo, V. Hoel, H. Happy, A. Cappy, IEEE Trans. Electron Dev. 47, 1950 (2000)
  • 7. H. Rodilla, T. González, D. Pardo, J. Mateos, J. Appl. Phys. 105, 113705 (2009)
  • 8. B.G. Vasallo, J. Mateos, D. Pardo, T. González, J. Appl. Phys. 94, 4096 (2003)
  • 9. B.G. Vasallo, J. Mateos, D. Pardo, T. González, J. Appl. Phys. 95, 8271 (2004)
  • 10. M.V. Fischetti, IEEE Trans. Electron Dev. 38, 634 (1991)
  • 11. T. Brudevoll, T.A. Fjeldly, J. Baek, M.S. Shur, J. Appl. Phys. 67, 7373 (1990)
  • 12. M. Costato, L. Reggiani, Phys. Status Solidi B 58, 471 (1973)
  • 13. O. Madelung, Semiconductors: Data Handbook, Springer, Berlin 2004
  • 14. S. Babiker, A. Asenov, N. Cameron, S.P. Beaumont, IEEE Trans. Electron Dev. 43, 2032 (1996)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv119n240kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.