Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 2 | 180-182

Article title

Investigation Details of Vortex Density in Laser-Written Π-Shaped Channel of YBCO Bridge by Means of I-V Dependences

Content

Title variants

Languages of publication

EN

Abstracts

EN
A current-self-induced magnetic field H_{j}, such that H_{c1} < H_{j} < H_{c2} at T < T_{c}, penetrates a thin-film, type-II superconductor forming the Abrikosov magnetic vortex-antivortex pairs in the film's areas of weakest superconductivity. Our atomic force microscopy and scanning tunneling microscopy images confirm that in 50 μm wide, 100 μm long and 0.3 μm thick YBa_2Cu_3O_{7 - x} superconducting devices magnetic flux penetrates first into a 5 μm wide, Π-shaped and partially deoxygenated (x ≈ 0.2) channel for easy vortex motion. When the Lorentz force overcomes pinning force in the channel, the flux starts to move and its drift dissipates energy inducing dc voltage. This work reports on the density of coherently moving vortices along the channel vs. temperature in range from 0.93T_{c} to 0.97T_{c}. Our simulations show that the vortex density vs. temperature dependence extracted from I-V measurements of our devices follows the temperature dependence of magnetic field penetration depth and the coherence length of the superconductor.

Keywords

Contributors

  • Department of Physics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
author
  • Joint Stock Company "Etronika", LT-09132 Vilnius, Lithuania
author
  • Department of Physics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
author
  • Department of Physics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
  • Department of General and Inorganic Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
author
  • Department of General and Inorganic Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
author
  • High-T_c Superconductivity Laboratory, Centre for Physical Sciences and Technology, LT-02300 Vilnius, Lithuania
author
  • Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627-0231, USA
author
  • Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627-0231, USA

References

  • 1. A.A. Abrikosov, Sov. Phys.-JETP 5, 1174 (1975)
  • 2. M. Tinkham, Introduction to Superconductivity, Int. Series in Pure and Appl. Phys. McGraw-Hill, New York 1975
  • 3. Y. Yuzhelevski, G. Jung, C. Camerlingo, M. Russo, M. Ghinovker, B.Ya. Shapiro, Phys. Rev. B 60, 9726 (1999)
  • 4. A. Jukna, I. Barboy, G. Jung, A. Abrutis, X. Li, D. Wang, R. Sobolewski, J. Appl. Phys. 99, 113902 (2006)
  • 5. A. Abrutis, V. Kubilius, A. Teiserskis, V. Bigelyte, V. Galindo, F. Weiss, J.P. Sénateur, B. Vengalis, A. Jukna, R. Butkute, Thin Solid Films 311, 251 (1997)
  • 6. A. Jukna, I. Barboy, G. Jung, A. Abrutis, X. Li, D. Wang, R. Sobolewski, Acta Phys. Pol. A 113, 959 (2008)
  • 7. D.N. Basov, R. Liang, D.A. Bonn, W.A. Bonn, W.N. Hardy, B. Dabrowski, M. Quijada, D.B. Tanner, J.P. Rice, D.M. Ginsberg, T. Timusk, Phys. Rev. Lett. 74, 598 (1995)
  • 8. L. Steponaviciene, J. Sulcas, A. Jukna, I. Barboy, G. Jung, A. Abrutis, R. Sobolewski, Mater. Sci. (Medziagotyra) 15, 291 (2009)
  • 9. P.P. Nguyen, Z.H. Wang, A.M. Rao, M.S. Dresselhaus, J.S. Moodera, G. Dresselhous, H.B. Radousky, R.S. Glass, J.Z. Liu, Phys. Rev. B 48, 1148 (1993)
  • 10. H.B. Sun, G.J. Russell, K.N.R. Taylor, Physica C 241, 2109 (1995)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv119n227kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.